Skip to main content
Log in

Postnatal development of the reproductive system in the grey short-tailed opossum, Monodelphis domestica

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Postnatal phenotypic sex differentiation has been investigated in a laboratory marsupial, Monodelphis domestica, as part of a larger study to resolve apparent discrepancies between eutherian and marsupial mammals. These include the formation of sex-specific structures in marsupials prior to gonadal differentiation and the retention in both sexes of structures which are sex-specific in eutherians. The time-course and nature of differentiation was investigated in 131 specimens ranging in age from the day of birth to 56 days. Patent wolffian ducts extend to the urogenital sinus in both sexes at birth, while müllerian ducts are identified on day 1 and grow in a cranio-caudal direction to reach the urogenital sinus on day 6. The male müllerian duct shows signs of regression at its cranial end on day 10 and throughout its length on day 12; its lumen has completely disappeared by day 15. By this time the epididymis and vas deferens have developed from the wolffian duct; their histological differentiation occurs between days 26 and 56. Prostatic buds are identifiable in tissue surrounding the male urethra on day 14. In the female, the wolffian duct is larger than the müllerian duct until day 14; thereafter the wolffian duct begins to regress at its cranial end, disappearing by day 17, whereas the müllerian duct begins to enlarge, converging with its fellow at the urogenital sinus by day 19. Lateral vaginae, vaginal culs-de-sac, uteri and oviducts have differentiated from the müllerian ducts by day 25. Gonads of both sexes are elongated in shape at birth, attached along the medial aspect of the large mesonephroi in the abdominal cavity. However, from day 3 onwards the testis becomes more rounded than the ovary. Degeneration of the male mesonephros begins about day 10 and is almost completed by day 19; the female mesonephros is still relatively large at day 14 though it too has almost disappeared by day 19. By postnatal day 13 the abdominal phase of testis descent is underway and the inguinal phase begins at day 15. Testes have reached the scrotal sac by day 24 and achieve their final position at the base of the scrotum by day 28. In summary, postnatal reproductive tract development and gonadal descent has been examined in this important biomedical model, where differentiation of the wolffian and müllerian ducts takes place after gonadal differentiation, according to the normal eutherian pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–F
Fig. 3A–D
Fig. 4
Fig. 5A–D
Fig. 6A, B
Fig. 7
Fig. 8
Fig. 9A–F
Fig.10

Similar content being viewed by others

Abbreviations

AMH:

Anti-müllerian hormone

LS:

Longitudinal section

Md:

Müllerian duct

PN0:

Day of birth

SEM:

Scanning electron micrograph

SRY:

Sex-determining region on the Y chromosome

TS:

Transverse section

Wd:

Wolffian duct

References

  • Backhouse KM (1964) The gubernaculum testis Hunteri, testicular descent and maldescent. Ann R Coll Surg Engl 35:27–33

    Google Scholar 

  • Barteczko KJ, Jacob MI (2000) The testicular descent in human – origin, development and fate of the gubernaculum hunteri, processus vaginalis peritonei and gonadal ligaments. Advances in Anatomy Embryology and Cell Biology 156. Springer, Berlin Heidelberg New York, pp 1–95

  • Burns RK (1939) The differentiation of sex in the opossum (Didelphis virginiana) and its modification by the male hormone testosterone propionate. J Morphol 65:79–199

    CAS  Google Scholar 

  • Burns RK (1945) The differentiation of the phallus in the opossum and its reactions to sex hormones. Contributions to Embryology Carnegie Institute, Washington 205:149–162

    Google Scholar 

  • Burns RK (1961) Role of hormones in the differentiation of sex. In: Young WC (ed) Sex and Internal Secretions, vol. 1, 3rd edn. Williams, Baltimore, pp 76–158

  • Butler CM, Harry JL, Deakin JE, Cooper DW, Renfree MB (1998) Developmental expression of the androgen receptor during virilization of the urogenital system of a marsupial. Biol Reprod 59:725–732

    CAS  PubMed  Google Scholar 

  • Cate RL, Donahoe PK, Maclaughlin DT (1990) Müllerian inhibiting substance. In: Sporn MB, Roberts AV (eds) Peptide growth factors and their receptors, vol. 2. Springer, Berlin Heidelberg New York, pp 179–210

  • Coveney D, Shaw G, Hutson JM, Renfree MB (2002A) The development of the gubernaculum and inguinal closure in the marsupial Macropus eugenii. J Anat 201:239–256

    Article  PubMed  Google Scholar 

  • Coveney D, Shaw G, Hutson JM, Renfree MB (2002B) Effect of an anti-androgen on testicular descent and inguinal closure in a marsupial, the tammar wallaby (Macropus eugenii). Reproduction 124:865–874

    Article  CAS  PubMed  Google Scholar 

  • Cowper W (1740) II Carigueya, seu Marsupiale Americanum Masculum or, The Anatomy of a male opossum: in a letter to Dr Edward Tyson from Mr William Cowper. Phil Trans R Soc Lond B Biol Sci 24:1565–1590

    Google Scholar 

  • Evans EP (1987) Karyotyping and sexing of gametes, embryos and fetuses and in situ hybridisation to chromosomes. In: Monk M (ed) Mammalian development a practical approach. IRL Press, Oxford, pp.93–114

  • Fadem BH, Harder JD (1992) Evidence for high levels of androgen in peripheral plasma during postnatal development in a marsupial: the gray short-tailed opossum (Monodelphis domestica). Biol Reprod 46:105–108

    CAS  PubMed  Google Scholar 

  • Fadem BH, Tesoriero JV, Whang M (1992) Early differentiation of the gonads in the grey short-tailed opossum (Monodelphis domestica). Biol Neonate 61:131–136

    CAS  PubMed  Google Scholar 

  • Finkel MP (1945) The relation of sex hormones to pigmentation and to testis descent in the opossum and ground squirrel. Am J Anat 76:93–152

    Google Scholar 

  • Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AH, Lovell-Badge R, Selwood L, Renfree MB, Cooper DW, Marshall Graves JA (1992) Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359:531–533

    CAS  PubMed  Google Scholar 

  • Griffiths AL, Renfree MB, Shaw G, Watts LM, Hutson JM (1993) The tammar wallaby (Macropus eugenii) and the Sprague-Dawley rat: comparative anatomy and physiology of inguinoscrotal testicular descent. J Anat 183:441–450

    PubMed  Google Scholar 

  • Heyns CF (1987) The gubernaculum during testis descent in the human fetus. J Anat 153:93–112

    CAS  PubMed  Google Scholar 

  • Hunter J (1762) Observations on the state of the testis in the foetus and on the hernia congenita. Medical Commentaries 75–90

  • Hutson JM (1985) A biphasic model for the hormonal control of testicular descent. Lancet 2:419–421

    CAS  PubMed  Google Scholar 

  • Hutson JM, Beasley SW (eds) (1992) Descent of the testis, inguinoscrotal descent of the testis. Edward Arnold, London, pp 33–49

  • Hutson JM, Donahoe PK (1986) The hormonal control of testis descent. Endocr Rev 7:270–283

    CAS  PubMed  Google Scholar 

  • Hutson JM, Shaw G, O W-S, Short RV, Renfree MB (1988) Müllerian inhibiting substance production and testicular migration and descent in the pouch young of a marsupial. Development 104:549–556

    CAS  PubMed  Google Scholar 

  • Hutson JM, Williams MPL, Fallat ME, Attah A (1990) Testicular descent: new insights into its hormonal control. Oxf Rev Reprod Biol 12:1–56

    CAS  PubMed  Google Scholar 

  • Josso N, Cate RL, Picard JY, Vigier B, di Clemente N, Wilson C, Imbeaud S, Pepinsky RB, Guerrier D, Boussin L, Legeai L, Carré-Eusèbe D (1993) Anti-Müllerian hormone: the Jost factor. Recent Prog Horm Res 48:1–59

    CAS  PubMed  Google Scholar 

  • Josso N, Picard J-Y (1986) Anti-Müllerian hormone. Physiol Rev 66:1038–90

    CAS  PubMed  Google Scholar 

  • Josso N, Picard J-Y, Tran D (1977) The anti-Müllerian hormone. Recent Prog Horm Res 33:117–167

    Google Scholar 

  • Jost A (1947) Recherches sur la differenciation sexuelle de l’embron de lapin. III Role des gonades foetales dans la differenciation sexuelle somatique. Arch Anat Microsc Morphol Exp 36:271–315

    Google Scholar 

  • Jost A, Vigier B, Prepin J, Perchellet JP (1973) Studies on sex differentiation in mammals. Recent Prog Horm Res 29:1–35

    CAS  PubMed  Google Scholar 

  • Klaatsch H (1890) Über den descensus testiculorum. Morphol Jb 16:587–646

    Google Scholar 

  • Moore HDM, Thurstan SM, (1990) Sexual differentiation in the grey short-tailed opossum Monodelphis domestica, and the effect of oestradiol benzoate on development in the male. J Zool 221:639–658

    Google Scholar 

  • Moskowicz L (1935) Das gubernaculum Hunteri und seine bedeutung für den descensus testiculorum beim menschen. Z Anat Entwickl Gesch 105:37–52

    Google Scholar 

  • O W-S, Renfree MB, Shaw G, (1988) Primary genetic control of somatic sexual differentiation in a mammal. Nature 331:716–717

    PubMed  Google Scholar 

  • Münsterberg A, Lovell-Badge R (1991) Expression of the mouse anti-Müllerian hormone gene suggests a role in both male and female sexual differentiation. Development 113:613–624

    PubMed  Google Scholar 

  • Raynaud A (1958) Inhibition, sur l’effet d’une hormone oestrogène, du développement du gubernaculum du foetus mâle de Souris. CR Acad Sci 246:176–179

    CAS  Google Scholar 

  • Renfree MB (1994) Sexual dimorphisms in the gonads and reproductive tract of marsupial mammals. In: Short RV, Bablaban E (eds) The Differences between the Sexes. Cambridge Univ Press, Cambridge, pp 213–230

  • Renfree MB, Robinson ES, Short RV, Vandeberg JL (1990) Mammary glands in male marsupials: 1. Primordia in neonatal opossums Didelphis virginiana and Monodelphis domestica. Development 110:385–390

    CAS  PubMed  Google Scholar 

  • Renfree MB, Shaw G, Short RV (1987) Sexual differentiation in marsupials. In: Haseltine FP, McClure ME, Goldberg EH (eds) Genetic markers of Sex Differentiation. Plenum Press, New York, pp 27–41

  • Renfree MB, Short RV (1988) Sex determination in marsupials: evidence for a marsupial-eutherian dichotomy. Phil Trans R Soc Lond B Biol Sci 322:41–53

    CAS  Google Scholar 

  • Renfree MB, Short RV, O W-S, Shaw G (1996) Sexual differentiation of the urogenital system of the fetal and neonatal tammar wallaby, Macropus eugenii. Anat Embryol 194:111–134

    CAS  PubMed  Google Scholar 

  • Renfree MB, Wilson JD, Short RV, Shaw G, George FW (1992) Steroid hormone content of the gonads of the tammar wallaby during sexual differentiation. Biol Reprod 47:644–647

    CAS  PubMed  Google Scholar 

  • Robinson ES, Renfree MB, Short RV, Vandeberg JL (1991) Mammary glands in male marsupials. 2. Development and regression of mammary primordia in Monodelphis domestica and Didelphis virginiana. Reprod Fertil Dev 3:295–301

    CAS  PubMed  Google Scholar 

  • Russell AJ, Gilmore DP, Mackay S, Ullmann SL, Baker PJ, Payne AP (2003) The role of androgens in development of the scrotum in the grey short-tailed Brazilian opossum (Monodelphis domestica). Anat Embryol 206:381–389

    CAS  PubMed  Google Scholar 

  • Schoot P van der (1992) Androgens in relation to prenatal development and postnatal inversion of the gubernacula in rats. J Reprod Fert 95:145–158

    Google Scholar 

  • Schoot P van der (1996A) Towards a rational terminology in the study of the Gubernaculum testis: arguments in support of the notion that the cremasteric sac should be considered the Gubernaculum in postnatal rats and other mammals. J Anat 189:97–108

    PubMed  Google Scholar 

  • Schoot P van der (1996B) Development, structure and function of the cranial suspensory ligaments of the mammalian gonads in a cross-species perspective; their possible role in effecting disturbed testicular descent. Hum Reprod 2:399–418

    Article  Google Scholar 

  • Schoot P van der, Xie Q, Payne AP, Mackay S, Ullmann S, Gilmore DP (1996) Development of the gubernaculum in female marsupial mammals. J Reprod Fert Abstract Series 18:43

    Google Scholar 

  • Shaw G, Renfree MB, Short RV, O W-S (1988) Experimental manipulation of sexual differentiation in wallaby pouch young treated with exogenous steroids. Development 104:689–701

    CAS  PubMed  Google Scholar 

  • Shaw G, Renfree MB, Leihy MW, Shackleton CHL, Roitman E, Wilson JD (2000) Prostate formation in a marsupial is mediated by the testicular androgen 5α-androstane-3α, 17β-diol. Proc Natl Acad Sci USA 97:12256–12259

    Article  Google Scholar 

  • Short RV (1982) Sex Determination and differentiation. In: Austin CR, Short CV (eds) Reproduction in Mammals, vol. 2. Cambridge Univ Press, Cambridge, pp 70–113

  • Sonea IM, Iqbal J, Prins GS, Jacobson CD (1997) Ontogeny of androgen receptor-like immunoreactivity in the reproductive tract of male Monodelphis domestica. Biol Reprod 56:852–860

    CAS  PubMed  Google Scholar 

  • Tyndale-Biscoe CH, Renfree MB (eds) (1987) Reproductive Physiology of Marsupials. Cambridge Univ Press, Cambridge

  • Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409

    Article  CAS  PubMed  Google Scholar 

  • Vigier B, Watrin F, Magre S, Tran D, Josso N (1987) Purified bovine AMH induces a characteristic freemartin effect in fetal rat prospective ovaries exposed to it in vitro. Development 100:43–55

    CAS  PubMed  Google Scholar 

  • Wartenberg H (1985) Morphological studies on the role of the periductal stroma in the regression of the human male Müllerian duct. Anat Embryol 171:311–323

    CAS  PubMed  Google Scholar 

  • Wensing CJG (1973) Testicular descent in some domestic mammals. III. Search for the factors that regulate the gubernacular reaction. Proc K Ned Akad Wet C Biol Med Sci 76:196–202

    CAS  Google Scholar 

  • Wensing CJG (1986) Testicular descent in the rat and a comparison of this process in the rat with that in the pig. Anat Rec 214:154–160

    CAS  PubMed  Google Scholar 

  • Wensing CJG (1988) The embryology of testicular descent. Horm Res 30:144–152

    CAS  PubMed  Google Scholar 

  • Wensing CJG, Colenbrander B (1986) Normal and abnormal testicular descent. Oxf Rev Reprod Biol 8:130–164

    CAS  PubMed  Google Scholar 

  • Werdelin L, Nilsonne A (1999) The evolution of the scrotum and testicular descent in mammals: a phylogenetic view. J Theor Biol 196:61–72

    Article  CAS  PubMed  Google Scholar 

  • Wrobel KH (2003) The genus Acipenser as a model for vertebrate urogenital development: the müllerian duct. Anat Embryol 206:255–271

    PubMed  Google Scholar 

  • Xie Q, Mackay S, Ullmann SL, Gilmore DP, Payne AP (1996) Testis development in the opossum Monodelphis domestica. J Anat 189:393–406

    PubMed  Google Scholar 

  • Xie Q, Mackay S, Ullmann SL, Gilmore DP, Payne AP, Gray C 1998) Postnatal development of Leydig cells in the opossum (Monodelphis domestica): an immunocytochemical and endocrinological study. Biol Reprod 58:664–669

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of undergraduate project students Sophie Amin, Anne L. Grattan, Mykela Heath and Anna M. Johnston. We also thank Mr David Russell for technical assistance, Miss Caroline Morris for help with artwork and Dr A.J. Russell for comments on the manuscript. This research was generously supported by the Wellcome Trust (039933/Z) and the Biotechnology and Biological Sciences Research Council (17-S13021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mackay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, S., Xie, Q., Ullmann, S.L. et al. Postnatal development of the reproductive system in the grey short-tailed opossum, Monodelphis domestica . Anat Embryol 208, 121–133 (2004). https://doi.org/10.1007/s00429-004-0386-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0386-1

Keywords

Navigation