Skip to main content

Advertisement

Log in

Ontogeny of guanylin-immunoreactive cells in rat salivary glands

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Guanylin-like peptides regulate electrolyte/water transport through the epithelia. Moreover, these peptides possess antiproliferative activity and regulate the turnover of epithelial cells. In an earlier study we localized guanylin immunoreactivity in secretory ducts of adult rodent salivary glands. In this study we investigated the appearance and distribution pattern of this peptide during the development of rat salivary glands. Guanylin immunoreactivity appeared at the beginning of cell differentiation from solid bud, on embryonic day 17 in the submandibular and sublingual glands and after day 18 in the parotid gland. Guanylin immunoreactivity appeared first in ductal and acinar anlage: its cell distribution pattern and fate differed in these two compartments. In the duct cells guanylin immunoreactivity spread after the duct system developed, whereas in acinar cells it disappeared after cell differentiation. The guanylin immunoreactivity we detected in adult salivary duct cells accords with guanylin’s role in regulating electrolyte and water transport through the various epithelia. It does so by activating guanylate cyclase-C receptor, increasing intracellular cGMP concentration, and phosphorylating the cystic fibrosis transmembrane conductance regulator (CFTR) protein by the cGMP-dependent protein kinase II. This signaling cascade couples to the ductal electrolyte/water secretion and modulates finally the electrolyte composition of the saliva. On the other hand, CFTR is also involved in mechanisms of cell growth, by regulating apoptosis, and promoting cell differentiation. The early diffuse guanylin immunoreactivity we observed in ducts and acinar anlage, before the secretory set is operative, suggests guanylin has a role in cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–h
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvares EP, Sesso A (1975) Cell proliferation, differentiation and transformation in the rat submandibular gland during early postnatal growth. A quantitative and morphological study. Arch Histol Jap 38:177–208

    CAS  PubMed  Google Scholar 

  • Barriere H, Poujeol C, Tauc M, Blasi JM, Counillon L, Poujeol P (2001) CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am J Physiol Cell Physiol 281:C810–C824

    CAS  PubMed  Google Scholar 

  • Beltowski J (2001) Guanylin and related peptides. J Physiol Pharmacol 52:351–375

    CAS  PubMed  Google Scholar 

  • Bottaro B, Cutler LS (1984) An electrophysiological study of the postnatal development of the autonomic innervation of the rat submandibular salivary gland. Archs Oral Biol 29:237–242

    CAS  Google Scholar 

  • Carrithers SL, Parkinson SJ, Goldstein S, Park P, Robertson DC, Waldman SA (1994) Escherichia coli Heat-Stable toxin receptors in human colonic tumors. Gastroenterology 107:1653–1661

    CAS  PubMed  Google Scholar 

  • Carrithers SL, Barber MT, Biswas S, Parkinson SJ, Park PK, Goldstein SD, Waldman SA (1996A) Guanylil cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Natl Acad Sci USA 93:14827–14832

    Article  CAS  PubMed  Google Scholar 

  • Carrithers SL, Parkinson SJ, Goldstein S, Park P, Urbanski RW, Waldman SA (1996B) Escherichia coli Heat-Stable toxin receptors a novel marker for colorectal tumors. Dis Colon Rectum 39:171–181

    CAS  PubMed  Google Scholar 

  • Cetin Y, Kuhn M, Kulaksiz H, Aderman K, Bargsten G, Grube D, Forssmann WG (1994) Enterochromaffin cells in the digestive system: cellular source of guanylin, a guanylate cyclase-activating peptide. Proc Natl Acad Sci USA 91:2935–2939

    CAS  PubMed  Google Scholar 

  • Cetin Y, Kulaksiz H, Redecker P, Bargsten G, Adermann K, Grube D, Forssmann WG (1995) Bronchiolar nonciliated secretory (Clara) cells: source of guanylin in the mammalian lung. Proc Natl Acad Sci USA 92:5925–5929

    CAS  PubMed  Google Scholar 

  • Chang WWL (1974) Cell population changes during acinus formation in the postnatal rat submandibular gland. Anat Rec 178:187–201

    CAS  PubMed  Google Scholar 

  • Cohen MB, Moyer MS, Luttrell M, Giannella RA (1986) The immature rat small intestine exhibits an increased sensitivity and response to Escherichia coli heat-stable enterotoxin. Pediatr Res 20:555–560

    CAS  PubMed  Google Scholar 

  • Cohen MB, Guarino A, Shukla R, Giannella RA (1988) Age-related differences in receptors for Escherichia coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology 94:367–373

    CAS  PubMed  Google Scholar 

  • Cohen MB, Witte DP, Hawkins JA, Currie MG (1995) Immunohistochemical localization of guanylin in the rat small intestine and colon. Biochem biophys res commun 209:803–808

    Article  CAS  PubMed  Google Scholar 

  • Cohen MB, Hawkins JA, Witte DP (1998) Guanylin mRNA expression in human intestine and colorectal adenocarcinoma. Lab Invest 78:101–108

    CAS  PubMed  Google Scholar 

  • Cutler LS (1980) The development and independent relationships between morphogenesis in developing salivary gland secretory cells. Anat Rec 196:341–347

    CAS  PubMed  Google Scholar 

  • Cutler LS, Chaudhry AP (1974) Cytodifferentiation of the acinar cells of the rat submandibular gland. Dev Biol 41:31–41

    CAS  PubMed  Google Scholar 

  • Cutler LS, Chaudhry AP (1975) Cytodifferentiation of striated duct cells and secretory cells in the convoluted granular tubules of the rat submandibular gland. Am J Anat 143:201–218

    CAS  PubMed  Google Scholar 

  • Date Y, Nakazato M, Yamaguchi H, Miyazato M, Matsukura S (1996) Tissue distribution and plasma concentration of human guanylin. Intern Med 35:171–175

    CAS  PubMed  Google Scholar 

  • D’Este L, Kulaksiz H, Rausch U, Vaccaro R, Wenger T, Tokunaga Y, Renda TG, Cetin Y (2000) Expression of guanylin in “pars tuberalis-specific cells” and gonadotrophs of rat adenohypophysis. Proc Natl Acad Sci USA 97:1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Gali H, Sieckman GL, Hoffman TJ, Kiefer GE, Chin DT, Forte LR, Volkert WA (2001A) Synthesis and in vitro evaluation of an 111In-labeled ST-peptide enterotoxin (ST) analogue for specific targeting of guanylin receptors on human colonic cancers. Anticancer Res 21:2785–2792

    CAS  PubMed  Google Scholar 

  • Gali H, Sieckman GL, Hoffman TJ, Owen NK, Chin DT, Forte LR, Volkert WA (2001B) In vivo evaluation of an 111In-labeled ST-peptide analog for specific-targeting of human colon cancers. Nucl Med Biol 28:903–909

    Article  CAS  PubMed  Google Scholar 

  • Garrett JR, Thulin A (1975) Changes in parotid acinar cells accompanying salivary secretion in rats on sympathetic or parasympathetic nerve stimulation. Cell Tiss Res 159:179–193

    CAS  Google Scholar 

  • Gresik EW (1980) Postnatal developmental changes in submandibular glands of rats and mice. J Histochem Cytochem 28:860–870

    CAS  PubMed  Google Scholar 

  • Gresik EW (1994) The granular convoluted tubule (GCT) cells of rodent submandibular glands. Microsc Res Tech 27:1–24

    CAS  PubMed  Google Scholar 

  • Guarino A, Cohen MB, Giannella RA (1987) Small and large intestinal guanylate cyclase activity in children: effect of age and stimulation by Escherichia coli heat-stable enterotoxin. Pediatr Res 21:551–555

    CAS  PubMed  Google Scholar 

  • Hayashi H, Ozono S, Watanabe K, Nagatsu I, Onozuka M (2000). Morphological aspects of the postnatal development of submandibular glands in male rats: involvement of apoptosis. J Histochem Cytochem 48:695–698

    CAS  PubMed  Google Scholar 

  • Ieda H, Naruse S, Furuya S, Ozaki T, Ando E, Nokihara K, Hori S, Kitagawa M, Hayakawa T (1998) Coexistence of proguanylin (1–15) and somatostatin in the gastrointestinal tract. J Gastroenterol Hepatol 13:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Izutsu KT, Cantino ME, Johnson DE (1994) A review of electron probe X-ray microanalysis studies of salivary gland cells. Microsc Res Tech 27:71–79

    CAS  PubMed  Google Scholar 

  • Jacoby F, Leeson CR (1959) The post-natal development of the rat submaxillary gland. J Anat 93:201–216

    CAS  PubMed  Google Scholar 

  • Klein RM (1982). Acinar cell proliferation in the parotid and submandibular salivary glands of neonatal rat. Cell Tissue Kinet 15:187–195

    CAS  PubMed  Google Scholar 

  • Kulaksiz H, Schmid A, Hönscheid M, Eissele R, Klempnauer J, Cetin Y (2001A) Guanylin in the human pancreas: a novel luminocrine regulatory pathway of electrolyte secretion via cGMP and CFTR in the ductal system. Histochem Cell Biol 115:131–145

    Article  CAS  PubMed  Google Scholar 

  • Kulaksiz H, Rausch U, Vaccaro R, Renda TG, Cetin Y (2001B) Guanylin and uroguanylin in the parotid and submandibular glands: potential intrinsic regulators of electrolyte secretion in salivary glands. Histochem Cell Biol 115:527–533

    CAS  PubMed  Google Scholar 

  • Kulaksiz H, Rehberg E, Stremmel W, Cetin Y (2002) Guanylin and functional coupling proteins in the human salivary glands and gland tumors: expression, cellular localization, and target membrane domains. Am J Pathol 161:655–664

    CAS  PubMed  Google Scholar 

  • Lawson KA (1970) Morphogenesis and functional differentiation of the rat parotid gland in vivo and in vitro. J Embryol Exp Morph 24:411–424

    CAS  PubMed  Google Scholar 

  • Li CY, Ziesmer SC, Lazcano-Villareal O (1987) Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 35:1547–1460

    Google Scholar 

  • Li Z, Taylor-Blake B, Light A, Goy MF (1995) Guanylin, an endogenous ligand for C-type guanylate cyclase, is produced by goblet cells in the rat intestine. Gastroenterology 109:1863–1875

    CAS  PubMed  Google Scholar 

  • Martinez JR, Camden J (1989) Ca2+ mobilization and Cl efflux in submandibular salivary cells of adult and newborn rats. Arch Oral Biol 34:147–152

    CAS  PubMed  Google Scholar 

  • Mori M, Yamada K, Ohomura H, Wataru K, Takai Y, Ilg E, Schäfer BW, Heizmann CW (1998) Immunohistochemical localization of S100A1 and S100A6 in postnatally developing salivary glands of the rats. Histochem Cell Biol 110:579–587

    Article  CAS  PubMed  Google Scholar 

  • Mork A-C, Zhang A, Martinez R, Roomans GM (1996) Chloride secretion in the submandibular gland of adult and early postnatal rats studied by X-ray microanalysis. Histochem Cell Biol 105:297–303

    CAS  PubMed  Google Scholar 

  • Pinkstaff CA (1980) The cytology of salivary glands. Int Rev Cytol 63:141-261

    Google Scholar 

  • Pitari GM, Guglielmo MD, Park J, Schulz S, Waldman SA (2001) Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma. Proc Natl Acad Sci USA 98:7846–7851

    Article  CAS  PubMed  Google Scholar 

  • Redman RS (1995) Proliferative activity by cell type in the developing rat parotid gland. Anat Rec 241:529–540

    CAS  PubMed  Google Scholar 

  • Redman RS, Ball WD (1978) Cytodifferentiation of secretory cells in the sublingual gland of the prenatal rat: a histological, histochemical and ultrastructural study. Am J Anat 153:367–390

    CAS  PubMed  Google Scholar 

  • Reinecke M, David I, Loffing-Cueni D, Ablinger P, Cetin Y, Kuhn M, Forssmann WG (1996) Localization, expression, and characterization of guanylin in the rat adrenal medulla. Histochem Cell Biol 106:367–374

    Article  CAS  PubMed  Google Scholar 

  • Shailubhai K (2002) Therapeutic applications of guanylate cyclase-C receptor agonists. Curr Opin Drug Discov Devel 5:261–268

    CAS  PubMed  Google Scholar 

  • Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151–5157

    CAS  PubMed  Google Scholar 

  • Sivakumar S, Mirels L, Miranda AJ, Hand AR (1998) Secretory protein expression patterns during rat parotid gland development. Anat Rec 252:485–497

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Chang WWL (1975) The development of the granular convoluted duct in the rat submandibular gland. Anat Rec 182:29–40

    CAS  PubMed  Google Scholar 

  • Steinbrecher KA, Tuohy TMF, Heppner Goss K, Scott MC, Witte D, Groden J, Cohen MB (2000) Expression of guanylin is downregulated in mouse and human intestinal adenomas. Biochem Biophys Res Commun 273:225–230

    Article  CAS  PubMed  Google Scholar 

  • Yamashina S, Mizuhira V (1976) Postnatal development of acinar cells in rat submandibular as revealed by electron microscopic staining for carbohydrate. Am J Anat 146:211–235

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Italian Ministry for University (MIUR 60%, Ricerche di Ateneo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Renda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaccaro, R., Cetin, Y. & Renda, T.G. Ontogeny of guanylin-immunoreactive cells in rat salivary glands. Anat Embryol 208, 65–73 (2004). https://doi.org/10.1007/s00429-003-0375-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0375-9

Keywords

Navigation