Skip to main content

Blink-related sensorimotor anatomy in the rat

Abstract

Protection of the eye and maintenance of the precorneal tear film depend on sensory innervation of the cornea and eyelids and motor innervation of muscles involved in closing and opening the eyes. Using a variety of fluorescent and transganglionic tracers, the sensorimotor innervation of blink-related orbital and periorbital structures was studied in Sprague-Dawley rats. The orbicularis oculi muscle surrounded the entire palpebral fissure and was innervated by motoneurons located along the dorsal cap of the ipsilateral facial motor nucleus. Upper and lower eyelid orbicularis oculi motoneurons were strictly ipsilateral and co-extensive, but upper eyelid orbicularis oculi motoneurons were, on average, slightly rostral and lateral to lower eyelid orbicularis oculi motoneurons. Facial motoneurons supplying the frontoscutularis, a muscle that helps to elevate the upper eyelid, were located in the medial division of the ipsilateral facial motor nucleus. Presumptive type Aβ afferents from the cornea terminated most prominently at the junction of the first cervical segment and the spinal trigeminal nucleus, pars caudalis. There was a second concentration of corneal terminations at the junction of pars caudalis and pars interpolaris of the spinal trigeminal nucleus. Sparse projections to the spinal trigeminal nucleus, pars oralis and the principal trigeminal nucleus were also detected. Presumptive type Aβ afferents from the eyelids terminated throughout the rostrocaudal extent of the spinal trigeminal nucleus with a heavy concentration within laminae III and IV of the first cervical segment. Presumptive types Aδ and C terminals from the eyelids were virtually limited to laminae I and II of the first cervical segment. Central terminations from the frontal nerve were present in the principal trigeminal nucleus and throughout the spinal trigeminal nucleus, but were most prominent within the dorsal horn of the first cervical segment. Our comprehensive description of blink-related sensorimotor anatomy in rats will provide a foundation for future physiological studies of blinking.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

I, II, III, IV and V:

spinal cord laminae

7:

facial nucleus

C1, C2 and C3:

first, second and third cervical segments

CTB:

B subunit of cholera toxin

DAB:

diaminobenzidine

DMSO:

dimethylsulfoxide

DY:

Diaminido Yellow

FB:

Fast Flue

FG:

Fluorogold

IR:

immunoreactivity

LP:

levator palpebrae

Mo5:

motor trigeminal nucleus

OO:

orbicularis oculi

PB:

phosphate buffer

PBS:

phosphate buffered saline

PCRt:

parvicellular reticular nucleus

Pr5:

principal trigeminal nucleus

R1, R2:

first and second components of the blink reflex to supraorbital nerve stimulation

sp5:

spinal trigeminal tract

Sp5:

spinal trigeminal nucleus

Sp5C, Sp5I, Sp5O:

pars caudalis, pars interpolaris, and pars oralis of spinal trigeminal nucleus

WGA-HRP:

wheat germ agglutinin-horseradish peroxidase

References

  • Aramideh M, Ongerboer de Visser BW, Koelman JHTM, Speelman JD (1995) Motor persistence of orbicularis oculi muscle in eye-lid-opening disorders. Neurology 45:897–902

    CAS  PubMed  Google Scholar 

  • Aramideh M, Ongerboer de Visser BW, Koelman JHTM, Majoie CBL, Holstege G (1997) The late blink reflex response abnormality due to lesion of the lateral tegmental field. Brain 120:1685–1692

    Article  PubMed  Google Scholar 

  • Basso MA, Strecker RE, Evinger C (1993) Midbrain 6-hydroxydopamine lesions modulate blink reflex excitability. Exp Brain Res 94:88–96

    CAS  PubMed  Google Scholar 

  • Belmonte C, Gallar J, Pozo MA, Rebollo I (1991) Excitation by irritant chemical substances of sensory afferent units in the cat’s cornea. J Physiol 437:709–725

    CAS  PubMed  Google Scholar 

  • Berardelli A, Cruccu G, Manfredi M, Rothwell JC, Day BL, Marsden CD (1985) The corneal reflex and the R2 component of the blink reflex. Neurology 35:797–801

    CAS  PubMed  Google Scholar 

  • Bron AJ, Tiffany JM (1998) The meibomian glands and tear film lipids. Structure, function, and control. In: Sullivan DA (eds) Lacrimal gland, tear film, and dry eye syndromes 2: basic and clinical relevance (advances in experimental medicine and biology, 438). Plenum Press, New York, pp 281–295

  • Doane MG (1980) Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink. Am J Ophthalmol 89:507–516

    CAS  PubMed  Google Scholar 

  • Evinger C, Shaw MD, Peck CK, Manning KA, Baker R (1984) Blinking and associated eye movements in humans, guinea pigs, and rabbits. J Neurophysiol 52:323–339

    CAS  PubMed  Google Scholar 

  • Evinger C, Graf WM, Baker R (1987) Extra- and intracellular HRP analysis of the organization of extraocular motoneurons and internuclear neurons in the guinea pig and rabbit. J Comp Neurol 262:429–445

    CAS  PubMed  Google Scholar 

  • Faulkner B, Brown TH, Evinger C (1997) Identification and characterization of rat orbicularis oculi motoneurons using confocal laser scanning microscopy. Exp Brain Res 116:10–19

    CAS  PubMed  Google Scholar 

  • Friauf E (1986) Morphology of motoneurons in different subdivisions of the rat facial nucleus stained intracellularly with horseradish peroxidase. J Comp Neurol 253:231–241

    CAS  PubMed  Google Scholar 

  • Fuchs AF, Becker W, Ling L, Langer TP, Kaneko CR (1992) Discharge patterns of levator palpebrae superioris motoneurons during vertical lid and eye movements in the monkey. J Neurophysiol 68:233–243

    CAS  PubMed  Google Scholar 

  • Fujihara T, Murakami T, Fujita H, Nakamura M, Nakata K (2001) Improvement of corneal barrier function by the P2Y(2) agonist INS365 in a rat dry eye model. Invest Ophthalmol Vis Sci 42:96–100

    CAS  PubMed  Google Scholar 

  • Halata Z, Munger BL (1980) The sensory innervation of primate eyelid. Anat Rec 198:657–670

    CAS  PubMed  Google Scholar 

  • Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. Williams and Wilkins, Baltimore

  • Hinrichsen CFL, Watson CD (1984) The facial nucleus of the rat: representation of facial muscles revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 209:407–415

    CAS  Google Scholar 

  • Hiraoka M, Shimamura M (1977) Neural mechanisms of the corneal blinking reflex in cats. Brain Res 125:265–275

    Article  CAS  PubMed  Google Scholar 

  • Hömig JP (1970) Die Anatomie des aktiven Bewegungsapparates der Al-binoratte (Mus rattus norvegicus albinos). Inaug Diss det Tierärztl Fakultät, München

  • Hoyes AD, Barber P (1976) Ultrastructure of the corneal nerves in the rat. Cell Tissue Res 172:133–144

    CAS  PubMed  Google Scholar 

  • Jenny AB, Saper CB (1987) Organization of the facial nucleus and corticofacial projection in the monkey: a reconsideration of the upper motor neuron facial palsy. Neurology 37:930–939

    CAS  PubMed  Google Scholar 

  • Keen MS, Burgoyne JD, Kay SL (1993) Surgical management of the paralyzed eyelid. Ear Nose Throat J 72:692–701

    CAS  PubMed  Google Scholar 

  • Klein BG, Rhoades RW, Jacquin MF (1990) Topography of the facial musculature within the facial (VII) motor nucleus of the neonatal rat. Exp Brain Res 81:649–653

    CAS  PubMed  Google Scholar 

  • Kugelberg E (1952) Facial reflexes. Brain 76:385–396

    Google Scholar 

  • Kume M, Uemura M, Matsuda K, Matsushima R, Mizuno N (1978) Topographical representation of peripheral branches of the facial nerve within the facial nucleus: an HRP study in the cat. Neurosci Lett 8:5–8

    Article  Google Scholar 

  • LaMotte CC, Kapadia SE, Shapiro CM (1991) Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). J Comp Neurol 311:546–562

    CAS  PubMed  Google Scholar 

  • Lawrenson JG, Ruskell GL (1993) Investigation of limbal touch sensitivity using a Cochet-Bonnet aesthesiometer. Br J Ophthalmol 77:339–343

    CAS  PubMed  Google Scholar 

  • LeDoux MS, Lorden JF, Weir AD, Smith JM (1997) Blink reflex to supraorbital nerve stimulation in the cat. Exp Brain Res 116:104–112

    CAS  PubMed  Google Scholar 

  • LeDoux MS, Q Zhou, RB Murphy, ML Greene, P Ryan (2001) Parasympathetic innervation of the Meibomian glands in rats. Invest Ophthalmol Vis Sci 42:2434–2441

    CAS  PubMed  Google Scholar 

  • Liu H, Llewellyn-Smith IJ, Basbaum AI (1995) Co-injection of wheat germ agglutinin-HRP and choleragenoid-HRP into the sciatic nerve of the rat blocks transganglionic transport. J Histochem Cytochem 43:489–495

    CAS  PubMed  Google Scholar 

  • Luppi PH, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224

    Article  CAS  PubMed  Google Scholar 

  • Marfurt CF (1981) The central projections of trigeminal primary afferent neurons in the cat as determined by the transganglionic transport of horseradish peroxidase. J Comp Neurol 203:785–798

    CAS  PubMed  Google Scholar 

  • Marfurt CF, Del Toro DR (1987) Corneal sensory pathway in the rat: a horseradish peroxidase tracing study. J Comp Neurol 261:450–459

    CAS  PubMed  Google Scholar 

  • Marfurt CF, Echtenkamp SF (1988) Central projections and trigeminal ganglion location of corneal afferent neurons in the monkey Macaca fascicularis. J Comp Neurol 272:370–382

    CAS  PubMed  Google Scholar 

  • Martin MR, Lodge D (1977) Morphology of the facial nucleus in the rat. Brain Res 123:1–12

    Article  CAS  PubMed  Google Scholar 

  • Maslany S, Crockett DP, Egger MD (1992) Organization of cutaneous primary afferent fibers projecting to the dorsal horn in the rat: WGA-HRP versus B-HRP. Brain Res 569:123–135

    Article  CAS  PubMed  Google Scholar 

  • May PJ, Porter JD (1998) The distribution of primary afferent terminals from the eyelids of macaque monkeys. Exp Brain Res 123:368–381

    Article  CAS  PubMed  Google Scholar 

  • Meng ID, Hu JW, Benetti AP, Bereiter DA (1997) Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area. J Neurophysiol 77:43–56

    CAS  PubMed  Google Scholar 

  • Meng ID, Hu JW, Bereiter DA (2000) Parabrachial area and nucleus raphe magnus inhibition of corneal units in rostral and caudal portions of trigeminal subnucleus caudalis in the rat. Pain 87:241–251

    Article  CAS  PubMed  Google Scholar 

  • Morcuende S, Delgado-García J-M, Ugolini G (2002) Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in rat. J Neurosci 22:8808–8818

    CAS  PubMed  Google Scholar 

  • Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124:176–208

    Article  CAS  PubMed  Google Scholar 

  • Muller LJ, Pels L, Vrensen GF (1996) Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci 37:476–488

    PubMed  Google Scholar 

  • Nicholson DA, Freeman JH Jr (2000) Developmental changes in eye-blink conditioning and neuronal activity in the inferior olive. J Neurosci 20:8218–8226

    CAS  PubMed  Google Scholar 

  • Oda Y (1981) Extraocular muscles and their relationship to the accessory abducens nucleus in rats as studied by the horseradish peroxidase method. Okajimas Folia Anat Jpn 58:43–54

    CAS  PubMed  Google Scholar 

  • Ongerboer de Visser BW, Kuypers HGJM (1978) Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg’s syndrome. Brain 101:285–294

    PubMed  Google Scholar 

  • Panneton WM, Burton H (1981) Corneal and periocular representation within trigeminal sensory complex in the cat studied with transganglionic transport of horseradish peroxidase. J Comp Neurol 199:327–344

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New York

  • Pelligrini JJ, Evinger C (1997) Role of cerebellum in adaptive modification of reflex blinks. Exp Brain Res 4:77–87

    Google Scholar 

  • Pelligrini JJ, Horn AKE, Evinger C (1995) The trigeminally evoked blink reflex. I. Neuronal circuits. Exp Brain Res 107:166–180

    CAS  PubMed  Google Scholar 

  • Porter JD, Burns LA, May PJ (1989) Morphological substrate for eyelid movements: innervation and structure of primate levator palpebrae superioris and orbicularis oculi muscles. J Comp Neurol 287:64–81

    CAS  PubMed  Google Scholar 

  • Powers AS, Schicatano EJ, Basso MA, Evinger C (1997) To blink or not to blink: inhibition and facilitation of reflex blinks. Exp Brain Res 113:283–290

    CAS  PubMed  Google Scholar 

  • Price DD, Dubner R, Hu JW (1976) Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face. J Neurophysiol 39:936–953

    CAS  PubMed  Google Scholar 

  • Robertson B, Arvidsson J (1985) Transganglionic transport of wheat germ agglutinin-HRP and choleragenoid-HRP in rat trigeminal primary sensory neurons. Brain Res 348:44–51

    Article  CAS  PubMed  Google Scholar 

  • Robertson B, Grant GA (1985) A comparison between WGA-HRP and choleragenoid-HRP as anterogradely transported markers in central branches of primary sensory neurones in the rat with some observations in the cat. Neuroscience 14:895–905

    CAS  PubMed  Google Scholar 

  • Sahlin S, Chen E, Kaugesaar T, Almqvist H, Kjellberg K, Lennerstrand G (2000) Effect of eyelid botulinum toxin injection on lacrimal drainage. Am J Ophthalmol 129:481–486

    Article  CAS  PubMed  Google Scholar 

  • Schicatano EJ, Basso MA, Evinger C (1997) Animal model explains the origins of the cranial dystonia benign essential blepharospasm. J Neurophysiol 77:2842–2846

    CAS  PubMed  Google Scholar 

  • Schicatano EJ, Peshori KR, Gopalaswamy R, Sahay E, Evinger C (2000) Reflex excitability regulates prepulse inhibition. J Neurosci 20:4240–4247

    CAS  PubMed  Google Scholar 

  • Shahani B (1970) The human blink reflex. J Neurol Neurosurg Psychiatry 33:792–800

    CAS  PubMed  Google Scholar 

  • Shigenaga Y, Chen IC, Suemune S, Nishimori T, Nasution ID, Yoshida A, Sato H, Okamoto T, Sera M, Hosoi M (1986a) Oral and facial representation within the medullary and upper cervical dorsal horns in the cat. J Comp Neurol 243:388–408

    CAS  PubMed  Google Scholar 

  • Shigenaga Y, Okamoto T, Nishimori T, Suemune S, Nasution ID, Chen IC, Tsuru K, Yoshida A, Tabuchi K, Hosoi M, et al (1986b) Oral and facial representation in the trigeminal principal and rostral spinal nuclei of the cat. J Comp Neurol 244:1–18

    CAS  PubMed  Google Scholar 

  • Shore JW (1985) Changes in lower eyelid resting position, movement, and tone with age. Am J Ophthalmol 99:415–423

    CAS  PubMed  Google Scholar 

  • Simons E, Smith PG (1994) Sensory and autonomic innervation of the rat eyelid: neuronal origins and peptide phenotypes. J Chem Neuroanat 7:35–47

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick BG, Fidell LS (1989) Using Multivariate Statistics, 2nd edn. Harper Row, New York

  • Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intraoral structures in the rat. Exp Neurol 111:324–331

    CAS  PubMed  Google Scholar 

  • Tamai Y, Iwamoto M, Tsujimoto T (1986) Pathway of the blink reflex in the brainstem of the cat: interneurons between the trigeminal nuclei and the facial nucleus. Brain Res 380:19–25

    Article  PubMed  Google Scholar 

  • Thanos PK, Terzis JK (1995) Motor endplate analysis of the denervated and reinnervated orbicularis oculi muscle in the rat. J Reconstr Microsurg 11:423–428

    CAS  PubMed  Google Scholar 

  • Tokunaga A, Oka M, Murao T, Yokoi H, Okumura T, Hirata T, Miyashita Y, Yoshitatsu S (1958) An experimental study on facial reflex by evoked electromyography. Med J Osaka Univ 9:397–411

    Google Scholar 

  • Travers JB (1995) Oromotor nuclei. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic Press, San Diego, pp 239–255

  • Ugolini G (1992) Transneuronal transfer of herpes simplex virus 1 (HSV 1) from mixed limb nerves to the CNS. I. Sequence of transfer from sensory, motor, and sympathetic nerve fibres to the spinal cord. J Comp Neurol 22:527–548

    Google Scholar 

  • VanderWerf F, Aramideh M, Otto JA, Ongerboer de Visser BW (1998) Retrograde tracing studies of subdivisions of the orbicularis oculi muscle in the rhesus monkey. Exp Brain Res 121:433–441

    Article  CAS  PubMed  Google Scholar 

  • van Ham JJ, Yeo CH (1996) The central distribution of primary afferents from the external eyelids, conjunctiva, and cornea in the rabbit, studied using WGA-HRP and B-HRP as transganglionic tracers. Exp Neurol 142:217–225

    Article  PubMed  Google Scholar 

  • Weiss C, Thompson RF (1991) The effects of age on eyeblink conditioning in the freely moving Fisher-344 rat. Neurobiol Aging 12:249–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to M.S.L. from the National Institutes of Health (NEI R01 EY12232), Society for Progressive Supranuclear Palsy, Benign Essential Blepharospasm Research Foundation, and University of Tennessee Medical Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. LeDoux.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gong, S., Zhou, Q. & LeDoux, M.S. Blink-related sensorimotor anatomy in the rat. Anat Embryol 207, 193–208 (2003). https://doi.org/10.1007/s00429-003-0341-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0341-6

Keywords

  • Trigeminal
  • Orbicularis oculi
  • Motoneurons
  • Cholera toxin
  • Eyelid