Skip to main content
Log in

The meningeal sheath of the regenerating spinal cord of the eel, Anguilla

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

We describe here the meningeal sheath that encloses the spinal cord, and the sheath that develops when the cord regenerates after a total transection. This description is derived from electron and light microscopy. The sheath of the uninjured cord was found to be a single structure of two parts: an outer, thin melanocyte layer and an inner, thicker layer of 2 to 10 rows of fibroblasts, closely associated with collagen and elastic fibers. Soon after cord transection, the injured axons re-grow and, together with the reforming central canal, create a bridge that links the transected cord within 8 days of injury. This bridge is covered at first by a rudimentary meningeal sheath, formed of fibroblasts and macrophages, that later progressively thickens and becomes more compact. By about day 20, the fibroblasts are arranged as 16 to 20 loose rows that include bundles of collagen, oriented along the rostro-caudal axis of the cord. Even after 144 days, the meninx, although substantially thicker than normal because of the numerous fibroblast rows (20 to 30), still lacks the melanocyte layer. In cases in which the meninx at the transection site was mechanically and pharmacologically (6-hydroxydopamine) disrupted, bridge formation was essentially unchanged, and axonal regrowth continued; some regrowing axons, however, extruded from the denuded cord. Accordingly, our findings indicate that although the meningeal sheath is not essential for cord regeneration to take place, it may well facilitate recovery by providing mechanical guidance and support to the regrowing axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Abnet K, Fawcett JW, Dunnett SB (1991) Interactions between meningeal cells and astrocytes in vivo and in vitro. Dev Brain Res 59:187–196

    Article  CAS  Google Scholar 

  • Anderson MJ, Waxman SG (1981) Morphology of regenerated spinal cord in Sternachus albifrons. Cell Tissue Res 219:1–8

    CAS  PubMed  Google Scholar 

  • Anderson MJ, Waxman SG (1983) Regeneration of spinal neurons in inframammalian vertebrates: Morphological and developmental aspects. J Hirnforsch 24:371–398

    CAS  PubMed  Google Scholar 

  • Balasingam V, Dickson K, Brade A, Yong VW (1996) Astrocyte activity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia 18:11–26

    Article  CAS  PubMed  Google Scholar 

  • Benraiss A, Arsanto JP, Coulon J, Thouveny Y (1997) Neural crest-like cells originate from the spinal cord during tail regeneration in adult amphibian urodeles. Dev Dynamics 209:15–28

    Article  CAS  Google Scholar 

  • Bernstein JJ, Bernstein ME (1967) Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp Neurol 19:25–32

    CAS  PubMed  Google Scholar 

  • Bernstein JJ, Getz R, Jefferson M, Kelemen M (1985) Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain Res 327:135–141

    Article  CAS  PubMed  Google Scholar 

  • Berry M, Maxwell ML, Logan A, Mathewson A, McConnell P, Ashurst DE, Thomas GH (1983) Deposition of scar tissue in the central nervous system. Acta Neurochir Suppl 32:31–53

    CAS  Google Scholar 

  • Bohn RC, Reier PJ, Sourbeer EB (1982) Axonal interactions with connective tissue and glial substrata during optic nerve regeneration in Xenopus larvae and adults. Am J Anat 165:397–419

    CAS  PubMed  Google Scholar 

  • Bunge RP (1983) Aspects of Schwann cell and fibroblast function relating to central nervous system regeneration. In Kao CC, Bunge RP, Reier PJ (eds): Spinal Cord Reconstruction. Raven Press, New York, pp 261–270

  • Carbonell AL, Boya J (1988) Ultrastructural study on meningeal regeneration and meningo-glial relationships after cerebral stab wound in the adult CNS. Brain Res 439:337–344

    Article  CAS  PubMed  Google Scholar 

  • Caruncho HJ, Silva PDD, Anadon R (1993) The morphology of teleost meningocytes as revealed by freeze fracture. J Submicrosc Cytol Pathol 25:397–406

    CAS  PubMed  Google Scholar 

  • Davies SJA, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned pathways. Exp Neurol 142:203–216

    Article  CAS  PubMed  Google Scholar 

  • Dervan, AG, Roberts, BL (2003) Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 458:293–306

    Article  PubMed  Google Scholar 

  • Doyle LMF, Stafford PP, Roberts BL (2001) Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel. Neuroscience 107:169–179

    Article  CAS  PubMed  Google Scholar 

  • Duffy MT, Liebich DR, Garner LK, Hawrych A, Simpson SB, Davis BM (1992) Axonal sprouting and frank regeneration in the lizard tail spinal cord: correlation between changes in synaptic circuitry and axonal growth. J Comp Neurol 316:363–374

    CAS  PubMed  Google Scholar 

  • Easter SS, Bratton B, Scherer SS (1984) Growth-related order of the retinal fibre layer in goldfish. J Neurosci 4:2173–2190

    PubMed  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    CAS  PubMed  Google Scholar 

  • Franklin RJM, Crang AJ, Blakemore WF (1992) The behaviour of meningeal cells following glial cell transplantation into chemically-induced areas of demyelination in the CNS. Neuropathol App Neurobiol 18:189–200

    CAS  Google Scholar 

  • Hildebrand M (1995) Analysis of Vertebrate Structure. John Wiley and Sons, New York

  • Hoffmann W (1992) Goldfish ependymins: cerebrospinal fluid proteins of meningeal origin. Prog Brain Res 91:13–17

    CAS  PubMed  Google Scholar 

  • Li MS, David S (1996) Topical glucocorticoids modulate the lesion interface after cerebral cortical stab wounds in adult rats. Glia 18:306–318

    Article  CAS  PubMed  Google Scholar 

  • Lindsay RM (1986) Reactive Astrocytes. In: Federoff S, Vernadkis A (eds) Astrocytes. Academic Press, London, pp 231–262

  • Martin P (1997) Wound healing - aiming for perfect skin regeneration. Science 276:75–81

    CAS  PubMed  Google Scholar 

  • Matthews MA, Onge MFS, Faciane CL (1979) An electron microscopic analysis of abnormal ependymal cell proliferation and envelopment of sprouting axons following spinal cord transection in the rat. Acta Neuropathol 45:27–36

    CAS  PubMed  Google Scholar 

  • McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinally transected lamprey. J Exp Zool 61:274–287

    Google Scholar 

  • Michel ME, Reier PJ (1979) Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548

    CAS  PubMed  Google Scholar 

  • Momose Y, Kohno K, Ito R (1988) Ultrastructural study on the meninx of the goldfish brain. J Comp Neurol 270:327–336

    CAS  PubMed  Google Scholar 

  • Moore IE, Buontempo JM, Weller RO (1987) Response of fetal and neonatal rat brain to injury. Neuropathol App Neurobiol 13:219–228

    CAS  Google Scholar 

  • Morse DE, Low FN (1972) The fine structure of the pia mater of the rat. Am J Anat 133:349–368

    CAS  PubMed  Google Scholar 

  • Nakao T (1979) Electron microscopic studies on the lamprey meninges. J Comp Neurol 183:429–454

    CAS  PubMed  Google Scholar 

  • Nona SN, Stafford CA (1995) Glial repair at the lesion site in regenerating spinal cord: an immunohistochemical study using species-specific antibodies. J Neurosci Res 42:350–356

    CAS  PubMed  Google Scholar 

  • Nordlander RH, Singer M (1978) The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 180:349–374

    CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Giger RJ, Ruitenberg M-J, Holtman AJGD, Wit JD, Winter FD, Verhaagen J (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13:143–16

    CAS  PubMed  Google Scholar 

  • Reier PJ (1986) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. In: Federoff S, Vernadakis A (eds) Astrocytes. Academic Press, London, pp 263–324

  • Reier PJ, Webster HDF (1974) Regeneration and remyelination of Xenopus tadpole optic nerve fibers following transection or crush. J Neurocytol 3:591–618

    CAS  PubMed  Google Scholar 

  • Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction. Raven Press, New York, pp 63–195

  • Ridet JL, Malhotra SK, Privat A, Gage GH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Google Scholar 

  • Rovainen CM (1970) Glucose production by lamprey meninges. Science 167:889–890

    CAS  PubMed  Google Scholar 

  • Rovainen CM, Lemcoe GE, Peterson A (1971) Structure and chemistry of glucose-producing cells in meningeal tissue of the lamprey. Brain Res 30:99–11

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JT, Shashoua VE (1988) Antibodies to ependymin block the sharpening of the regenerating retinotectal projection in the goldfish. Brain Res 446:269–284

    Article  CAS  PubMed  Google Scholar 

  • Schwarz H, Muller-Schmid A, Hoffmann W (1993) Ultrastructural localization of ependymins in the endomeninx of the brain of the rainbow trout: possible association with collagen fibrils of the extracellular matrix. Cell Tissue Res 273:417–425

    CAS  Google Scholar 

  • Seitz R, Lohler L, Schwendemann G (1981) Ependyma and meninges of the spinal cord of the mouse. Cell Tissue Res 220:61–72

    CAS  PubMed  Google Scholar 

  • Shashoua VE (1991) Ependymin, a brain extracellular protein, and CNS plasticity. Ann NY Acad Sci 627:94–114

    CAS  PubMed  Google Scholar 

  • Shearer MC, Fawcett JW (2001) The astrocyte/meningeal interface - a barrier to successful nerve regeneration? Cell Tissue Res 305:267–273

    Google Scholar 

  • Sievers J, Pehlemann FW, Gude S, Berry M (1994) Meningeal cells organise the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149

    CAS  PubMed  Google Scholar 

  • Simpson SB (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. L. Initiation of regeneration and cartilage differentiation: The role of ependyma. J Morphol 114:425–436

    Google Scholar 

  • Simpson SB (1983) Fasiculation and guidance of regenerating central axons by the ependyma. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal Cord Reconstruction. Raven Press, New York, pp 151–162

  • Stafford CA, Shehab SAS, Nona SN, Dillon JRC (1990) Expression of glial fibrillary acidic protein (GFAP) in goldfish optic nerve following injury. Glia 3:33–42

    CAS  PubMed  Google Scholar 

  • Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notopthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ, eds: Spinal Cord Reconstruction. Raven Press, New York, pp 121–149

  • Sterzi G (1901) Ricerche intorno all' anatomia comparata ed all' ontongenesi delle meningi e considerazioni sulla filogenesi. Arti R Ist veneto di sci, lett ed arti 60:1101–1137

  • Thormodsson FR, Antonian E, Graftstein B (1992) Extracellular glycoproteins of goldfish optic tectum labelled by intraocular injection of 3H-proline. Exp Neurol 117:260–268

    CAS  PubMed  Google Scholar 

  • Trimmer PA, Wunderlich RE (1990) Changes in astroglial scar formation in rat optic nerve as a function of development. J Comp Neurol 296:359–378

    CAS  PubMed  Google Scholar 

  • Vandenabeele F, Creemers J, Lamberts I (1996) Ultrastructure of the human arachnoid mater and dura mater. J Anat 189:417–430

    Google Scholar 

  • Van Gelderen CV (1926) Uber die Entwicklung der Hirnhaute bei Teleostiern. Anat Anz 60:48–57

    Google Scholar 

  • Wang X, Messing A, David S (1997) Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol 148:568–576

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Murray M, Grafstein B (1995) Cranial meninges of goldfish: Age-related changes in morphology of meningeal cells and accumulation of surfactant-like multilamellar bodies. Cell Tissue Res 281:349–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. G. Meredith for her comments on the manuscript, and to Alison Boyce, David John, Neil Ronan and Peter Stafford for technical support and advice. This work was supported by a Research Grant and a Basic Research Award (SC/95/012) from Enterprise Ireland, and by a bursary from the Electron Microscope Unit of Trinity College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian G. Dervan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dervan, A.G., Roberts, B.L. The meningeal sheath of the regenerating spinal cord of the eel, Anguilla . Anat Embryol 207, 157–167 (2003). https://doi.org/10.1007/s00429-003-0334-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0334-5

Keywords

Navigation