Skip to main content

Advertisement

Log in

Stomatin immunoreactivity in ciliated cells of the human airway epithelium

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Stomatin is a widely distributed 32kD membrane protein of unknown function. In biochemical studies it is associated with cholesterol+sphingomyelin-rich 'rafts' in the cytomembrane. Genetic studies in C. elegans, supported by microscopic studies in mammalian tissue and co-expression studies in oocytes, suggest a functional link with the DEG/ENaC (degenerin/epithelial Na+ channel) superfamily of monovalent ion channels. Since ENaC channels play a prominent role in the physiology of the respiratory epithelium, we have studied the immunolocalization of stomatin in mature and developing human airway epithelium by means of Western blot analysis, immunocytochemistry, and immunoelectron microscopy. Stomatin immunoreactivity (stomatin-IR) was found in the ciliated cells of the conductive airway epithelium in a distinct distribution pattern with the strongest signal along the cilia. Immunogold labelling revealed immunogold particles at the basal bodies, along the cilia, and at the membrane of the microvilli. The presence of stomatin-IR paralleled the stages of ciliogenesis in airway development, and its appearance preceded the elongation of the axoneme and the cilial outgrowth. Due to its presence in the different cellular locations in the ciliated cell, we suggest that stomatin is involved in various cellular functions. From its ultrastructural position, stomatin could be a candidate for a membrane-associated mechanotransducer with a role in the control of ciliary motility. Stomatin as a raft protein might be a microtubule associated protein moving along the outer surface of the microtubules to its terminal site of action in the cilia. Stomatin-IR in microvilli supports the hypothesis of a co-localization with β- and γ- ENaC and, in conclusion, their potential functional interaction to control the composition of periciliary mucus electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.
Fig. 3A–C.
Fig. 4A–F.

Similar content being viewed by others

References

  • Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B (1998) Role of γ-ENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102:1634–1640

    CAS  PubMed  Google Scholar 

  • Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24:349–354

    Article  CAS  PubMed  Google Scholar 

  • Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    CAS  PubMed  Google Scholar 

  • Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–466

    CAS  PubMed  Google Scholar 

  • Coles SE, Ho MM, Chetty MC, Nicolaou A, Stewart GW (1999) Hereditary stomatocytosis with marked pseudohyperkalemia. Br J Haematol 104:275–283

    Article  CAS  PubMed  Google Scholar 

  • Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593

    Google Scholar 

  • Driscoll M, Kaplan J (1997). Mechanotransduction. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) The nematode C. elegans, II. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp 645–677

  • Eber SW, Lande WM, Iarocci TA, Mentzer WC, Hohn P, Wiley JS, Schroter W (1989) Hereditary stomatocytosis: consistent association with an integral membrane protein deficiency. Br J Haem 72:452–455

    CAS  Google Scholar 

  • Farman N, Talbot CR, Boucher R, Fay M, Canessa C, Rossier BC, Bonvalet JP (1997) Noncoordinated expression of α-, β-, γ-subunit mRNAs of epithelial Na+ channel along the rat respiratory tract. Am J Physiol 272:131–141

    Google Scholar 

  • Fricke B, Argent AC, Pizzey AR, Chetty MC, Turner EJ, Ho MM, Jolascon A, Düring M von, Stewart GW (2003) The 'stomatin' gene and protein in overhydrated hereditary stomatocytosis. Blood (in press)

  • Fricke B, Lints R, Stewart GW, Drummond H, Dodt G, Driscoll M, Düring M von (2000) Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res 299:327–334

    CAS  PubMed  Google Scholar 

  • Gaillard D, Hinnrasky J, Coscoy S, Hofman P, Matthay MA, Puchelle E, Barbry P (2000) Early expression of β- and γ-gamma-subunits of epithelial sodium channel during human airway development. Am J Physiol Lung Cell Mol Physiol 278:177–184

    Google Scholar 

  • Gilles F, Glenn M, Goy A, Remache Y, Zelenetz AD (2000) A novel gene STORP (STOmatin-Related Protein) is localized 2 kb upstream of the promyelocytic gene on chromosome 15q22. Eur J Haematol 64:104–113

    Article  CAS  PubMed  Google Scholar 

  • Goodman MB, Ernstrom GG, Chelur DS, O´Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Gu G, Caldwell GA, Chalfie M (1996) Genetic interaction affecting touch sensitivity in Caenorhabditis elegans. Proc Natl Acad Sci USA 93:6577–6582

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    CAS  PubMed  Google Scholar 

  • Hiebl-Dirschmied CM, Adolf GR, Prohaska R (1991) Isolation and partial characterization of the human erythrocyte band 7 integral membrane protein. Biochim Biophys Acta 1065:195–202

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470

    CAS  PubMed  Google Scholar 

  • Huang M, Gu G, Ferguson EL, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378:292–295

    CAS  PubMed  Google Scholar 

  • Hummler E, Barker P, Talbot C, Wang Q, Verdunno C, Grubb B, Gatzy J, Burnier M, Horisberger JD, Beermann F, Boucher RC, Rossier BC (1997) A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci USA 94:11710–11715

    Article  CAS  PubMed  Google Scholar 

  • Kobayakawa K, Hayashi R, Morita K, Miyamichi K, Oka Y, Tsuboi A, Sakano H (2002) Stomatin-related olfactory protein, SRO, specifically expressed in the murine olfactory sensory neurons. J Neurosci 22:5931–5937

    CAS  PubMed  Google Scholar 

  • Lande WM, Thiemann PW, Mentzer WC (1982) Missing band 7 membrane protein in two patients with high sodium, low potassium red cells. J Clin Invest 70:1273–1280

    CAS  PubMed  Google Scholar 

  • Liu M, Post M (2000) Mechanical signal transduction in the fetal lung. J Appl Physiol 89:2078–2084

    CAS  PubMed  Google Scholar 

  • Liu M, Tanswell K, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277:667–683

    Google Scholar 

  • Lock SP, Sephton Smith R, Hardisty RM (1961) Stomatocytosis: a hereditary haemolytic anomaly associated with haemolyic anemia. Br J Haematol 7:303–314

    CAS  Google Scholar 

  • Mahendrasingam S, Katori Y, Furness DN, Hackney CM (1997) Ultrastructural localization of cadherin in the adult guinea-pig organ of Corti. Hear Res 111:85–92

    Article  CAS  PubMed  Google Scholar 

  • Mairhofer M, Steiner M, Mosgoeller W, Prohaska R, Salzer U (2002) Stomatin is a major lipid-raft component of platelet alpha granules. Blood 100:897–904

    Article  CAS  PubMed  Google Scholar 

  • Mannsfeldt AG, Stucky CP, Lewin GR (1999) Stomatin, a MEC-2 like protein, is expressed by mammalian sensory neurons. Mol Cell Neurosci 13:391–404

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, McCray PB, Sigmund RD, Welsh MJ, Stokes JB (1996) Localization of epithelium sodium channel subunit mRNAs in adult rat lung by in situ hybridization. Am J Physiol 271:332–339

    Google Scholar 

  • Muimo R, Hornickova Z, Riemen CE, Gerke V, Matthews H, Mehta A (2000) Histidine phosphorylation of annexin I in airway epithelia. J Biol Chem 275:36632–36636

    Article  CAS  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  • Rajaram SR, Sedensky MM, Morgan PG (1998) Unc-1: a stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans. Proc Natl Acad Sci USA, 95:8761–8766

  • Rajaram SR, Spangler TL, Sedensky MM, Morgan PG (1999) A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. Genetics 153:1673–1682

    CAS  PubMed  Google Scholar 

  • Salzer U, Hinterdorfer P, Hunger U, Borken C, Prohaska R (2002) Ca(++)-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood 99:2569–2577

    Article  CAS  PubMed  Google Scholar 

  • Salzer U, Prohaska R (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97:1141–1143

    Article  CAS  PubMed  Google Scholar 

  • Sedensky MM, Siefker JM, Morgan PG (2001) Model organisms: new insights into ion channel and transporter function. Stomatin homologues interact in Caenorhabditis elegans. J Physiol Cell Physiol 280:1340–1348

    Google Scholar 

  • Snyers L, Umlauf E, Prohaska R (1999) Association of stomatin with lipid-protein complexes in the plasma membrane and the endocytotic compartment. Eur J Cell Biol 78:802–812

    CAS  PubMed  Google Scholar 

  • Stewart GW, Hepworth-Jones BE, Keen JN, Dash BCJ, Argent AC, Casimir CM (1992) Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+ low K+ stomatocytic erythrocytes. Blood 79:1593–1601

    CAS  PubMed  Google Scholar 

  • Stewart GW, Fricke B (2003) The curious genomic path from leaky red cell to nephrotic kidney. Nephron Physiol 93:29–33

  • Stewart GW, Turner EJ (1999) The hereditary stomatocytoses and allied disorders: congenital disorders of erythrocyte membrane permeability to Na+ and K+. Baillieres Best Pract Res Clin Haematol 12:707–728

    Article  CAS  PubMed  Google Scholar 

  • Tavernarakis N, Driscoll M (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu Rev Physiol 59:659–689

    CAS  PubMed  Google Scholar 

  • Tavernarakis N, Driscoll M, Kyrpides NC (1999) The SPFH domain: a universal motif in stomatins and other membrane-associated proteins implicated in regulating targeted protein turnover. Trends Biochem Sci 24:425–427

    Article  CAS  PubMed  Google Scholar 

  • Treharne KJ, Marshall LJ, Mehta A (1994) A novel chloride-dependent GTP-utilizing protein kinase in plasma membranes from human respiratory epithelium. Am J Physiol 267:592–601

    Google Scholar 

  • Venkatesh VC, Katzberg HD (1997) Glucocorticoid regulation of epithelial sodium channel genes in human fetal lung. Am J Physiol Lung Cell Mol Physiol 273:227–233

    Google Scholar 

  • Wang Y, Morrow JS (2000) Identification and characterization of human SLP-2, a novel homologue of stomatin (band 7.2b) present in erythrocytes and other tissues. J Biol Chem 275:8062–8071

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Turetsky T, Perrine S, Johnson RM, Mentzer WC (1992) Further studies on RBC membrane protein 7.2B deficiency in hereditary stomatocytosis. Blood 80 [Suppl 1]:275

Download references

Acknowledgements

We thank the Sir Jules Thorn Trust for funding (GWS). We thank Luzie Augustinowski, Margaret Chetty and Katja Rumpf for their excellent technical assistance, Debbie Baines and Monica Driscoll for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Fricke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, B., Stewart, G.W., Treharne, K.J. et al. Stomatin immunoreactivity in ciliated cells of the human airway epithelium. Anat Embryol 207, 1–7 (2003). https://doi.org/10.1007/s00429-003-0324-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0324-7

Keywords

Navigation