Skip to main content

Advertisement

Log in

Immortalized bovine pancreatic duct cells become tumorigenic after transfection with mutant k-ras

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

An Erratum to this article was published on 23 March 2012

Abstract

Mutation of the K-ras gene is thought to be an early and important event in pancreatic carcinogenesis. In order to study the role of this molecular alteration in the transition from the normal to the neoplastic pancreatic cell, bovine pancreatic duct cells were first immortalized by SV40 large T antigen (Ag) complementary (c)DNA transfection and then transfected with a mutated K-ras gene. As did primary duct cells, the immortalized duct cells (more than 100 passages) expressed cytokeratins, carbonic anhydrase type-II, cystic fibrosis transmembrane conductance regulator (CFTR), and multidrug resistance (mdr). They grew as a single layer after transplantation under plastic domes and formed three-dimensional structures resembling ducts when grown on Matrigel. Cell growth was stimulated by insulin, epidermal growth factor (EGF), transforming growth factor (TGF)-α, but cells did not respond to gastrin and CCK-8. They did not form colonies in soft agar nor did they form tumors in nude mice. Immortalized cells transfected with mutated K-ras acquired the ability to form tumors after orthotopic injection into the nude mouse pancreas. It is concluded that SV 40 immortalized bovine pancreatic duct cells retain the features of normal duct cells and gain tumorigenicity by transfection with mutated K-ras. This suggests an important role for K-ras in this pancreatic carcinoma model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, et al (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233:545–548

    Article  CAS  PubMed  Google Scholar 

  2. Case RM, Argent BE (1993) Pancreatic duct cell secretion: control and mechanisms of transport. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The pancreas: biology, pathobiology, and disease, 2nd edn. Raven Press, New York, pp 301–350

    Google Scholar 

  3. Casey G, Smith R, McGillivray D, Peters G, Dickson C (1986) Characterization and chromosome assignment of the human homolog of int-2, a potential proto-oncogene. Mol Cell Biol 6:502–500

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Cavender JF, Conn A, Epler M, Lacko H, Tevethia MJ (1995) Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts. J Virol 69:923–934

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen SL, Tsao YP, Chen YL, Huang SJ, Chang JL, Wu SF (1998) The induction of apoptosis by SV40 T antigen correlates with c-jun overexpression. Virology 244:521–529

    Article  CAS  PubMed  Google Scholar 

  6. Chey WY (1993) Hormonal control of pancreatic exocrine secretion. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA (eds) The exocrine pancreas. Biology, pathobiology, and disease, 2nd edn. Raven Press, New York, pp 403–424

    Google Scholar 

  7. Farré A, Ishikuza J, Gómez G, Evers BM, Sadyari R, Koo JK, et al (1994) Bombesin inhibits growth of pancreatic ductal carcinoma (H2T) in nude mice. Pancreas 9:652–656

    Article  PubMed  Google Scholar 

  8. Frazier ML, Lilly BJ, Wu EF, Ota T, Hewett-Emmett D (1990) Carbonic anhydrase II gene expression in cell lines from human pancreatic adenocarcinoma. Pancreas 5:507–514

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS (1996) Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 148:1763–1770

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Fusenig NE, Breitkreutz D, Dzarlieva RT, Boukamp P, Bohnert A, Tilgen W (1983) Growth and differentiation characteristics of transformed keratinocytes from mouse and human skin in vitro and in vivo. J Invest Dermatol 81:168s–175s

    Article  CAS  PubMed  Google Scholar 

  11. Gilles C, Piette J, Peter W, Fusenig NE, Foidart JM (1994) Differentiation ability and oncogenic potential of HPV-33 — and HPV-33 + ras-transfected keratinocytes. Int J Cancer 58:847–854

    Article  CAS  PubMed  Google Scholar 

  12. Goldammer T, Brunner RM, Schwerin M (1997) Comparative analysis of Y chromosome structure in Bos taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes. Cytogenet Cell Genet 77:238–412

    Article  CAS  PubMed  Google Scholar 

  13. Guthridge CJ, Conn A, Epler M, Lacko H (1994) Phospholipases A2 in ras-transformed and immortalized human mammary epithelial cells. Cancer Lett 86:11–21

    Article  CAS  PubMed  Google Scholar 

  14. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumor cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  15. Halevy O, Michalovitz D, Oren M (1990) Different tumorderived p53 mutants exhibit distinct biological activities. Science 250:113–116

    Article  CAS  PubMed  Google Scholar 

  16. Heimendahl GV, Gebhardt E, Dingermann TH (1988) Protooncogene activation in surgical specimens of rectal carcinoma. Anticancer Res 8:805–812

    Google Scholar 

  17. Heinze H, Arnold HH, Fischer D, Kruppa J (1988) The primary structure of the human ribosomal protein S6 derived from a cloned cDNA. J Biol Chem 263:4139–4144

    CAS  PubMed  Google Scholar 

  18. Heller T, Trautmann B, Zöller-Utz I, König HJ, Ell C, Liebe S, et al (1995) Restriktionsenzym-Mismatch-Polymerase-Kettenreaktion zum Nachweis von ki-ras-Onkogen-Mutationen beim Pankreaskarzinom. Dtsch Med Wochenschr 120:826–830

    Article  CAS  PubMed  Google Scholar 

  19. Jesnowski R, Liebe S, Löhr M (1998) Increasing the transfection efficacy and subsequent long-term culture of resting human pancreatic duct epithelial cells. Pancreas 17:262–265

    Article  PubMed  Google Scholar 

  20. Joneson T, Bar-Sagi D (1999) Suppression of ras-induced apoptosis by the rac GTPase. Mol Cell Biol 19:5892–5901

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Kartner N, Evernden-Porelle D, Bradley G, Ling V (1985) Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316:820–823

    Article  CAS  PubMed  Google Scholar 

  22. Kartner N, Hanrahan JW, Jensen TJ, Naismith AL, Sun SZ, Ackerley CA, et al (1991) Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64:681–691

    Article  CAS  PubMed  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriphage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  24. Lee GH, Ogawa K, Drinkwater NR (1995) Conditional transformation of mouse liver epithelial cells. An in vitro model for analysis of genetic events in hepatocarcinogenesis. Am J Pathol 147:1811–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lloyd AC, Obermüller F, Staddon S, Barth CF, McMahon M, Land H (1997) Cooperating oncogenes converge to regulate cyclin/cdk complexes (abstract). Genes Dev 11:663–677

    Article  CAS  PubMed  Google Scholar 

  26. Löhr M, Trautmann B, Göttler M, Peters S, Zauner I, Maillet B, et al (1994) Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 69:144–151

    Article  PubMed Central  PubMed  Google Scholar 

  27. Löhr M, Trautmann B, Peters S, Zauner I, Meier A, Klöppel G, et al (1996) Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas. Pancreas 12:248–259

    Article  PubMed  Google Scholar 

  28. Marino LR, Cotton CU (1996) Immortalization of bovine pancreatic duct epithelial cells. Am J Physiol 270:G676-G683

    CAS  PubMed  Google Scholar 

  29. Marino CR, Matovcik LM, Gorelick FS, Cohn JA (1991) Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. J Clin Invest 88:712–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Olson MF, Paterson HF, Marshall CJ (1998) Signals from ras and rho GTPases interact to regulate expression of p21Waf1/Cip1 (abstract). Nature 394:295–299

    Article  CAS  PubMed  Google Scholar 

  31. Peng X, Lang CM, Kreider JW (1996) Immortalization of inbred rabbit keratinocytes from a Shope papilloma and tumorigenic transformation of the cells by EJ-ras. Cancer Lett 108:101–109

    Article  CAS  PubMed  Google Scholar 

  32. Ray FA, Peabody DS, Cooper JL, Cram LS, Kraemer PM (1990) SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biol 42:13–31

    CAS  Google Scholar 

  33. Reddel RR, De Silva R, Duncan EL, Rogan EM, Whitaker NJ, Zahra DG, et al (1995) SV40-induced immortalization and ras-transformation of human bronchial epithelial cells. Int J Cancer 61:199–205

    Article  CAS  PubMed  Google Scholar 

  34. Reyes G, Villanueva A, Garciá C, Sancho FJ, Piulats J, Lluís F, et al (1996) Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res 56:5713–5719

    CAS  PubMed  Google Scholar 

  35. Rhim JS, Webber MM, Bello D, Lee MS, Arnstein P, Chen LS, et al (1994) Stepwise immortalization and transformation of adult human prostate epithelial cells by a combination of HPV-18 and v-Ki-ras. Proc Natl Acad Sci USA 91:11874–11878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sack GH (1981) Human cell transformation by simian virus 40. In Vitro 17:1–19

    Article  CAS  PubMed  Google Scholar 

  37. Sandberg M, Vuorio E (1987) Localization of types I, II, and III collagen mRNAs in developing human skeletal tissue by in situ hybridization. J Cell Biol 104:1077–1084

    Article  CAS  PubMed  Google Scholar 

  38. Schwarzbauer JE, Tamkun JW, Lemischka IR, Hynes RO (1983) Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35:421–428

    Article  CAS  PubMed  Google Scholar 

  39. Seifert D, Keeton M, Eguchi Y, Sawdey M, Loskutoff DJ (1991) Detection of vitronectin mRNA in tissues and cells of the mouse. Proc Natl Acad Sci U S A 88:9402–9406

    Article  Google Scholar 

  40. Sirica AE, Longnecker DS (1997) Biliary and pancreatic ductal epithelia. Pathobiology and pathophysiology. Marcel Dekker Inc., New York

    Google Scholar 

  41. Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1:327–341

    CAS  PubMed  Google Scholar 

  42. Sridhar KS, Ohnuma T, Plasse TF, Holland JF (1988) Simultaneous soft agar cloning of ascites and solid tumor specimens from patients with ovarian cancer. Cancer 62:1577–1581

    Article  CAS  PubMed  Google Scholar 

  43. Tada M, Ohashi M, Shiratori Y, Okudaira T, Komatsu Y, Kawabe T, et al (1996) Analysis of k-ras gene mutation in hyperplastic duct cells of the pancreas without pancreatic disease. Gastroenterology 110:227–231

    Article  CAS  PubMed  Google Scholar 

  44. Terhune PG, Phifer DM, Tosteson TD, Longnecker DS (1998) K-ras mutation in focal proliferative lesions of human pancreas. Cancer Epidemiol Biomarkers Prev 7:515–521

    CAS  PubMed  Google Scholar 

  45. Thiebaut F, Tsuruo T, Hamada H, Gottesmann MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrugresistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84:7735–7738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Trautmann B, Schlitt HJ, Hahn EG, Lohr M (1993) Isolation, culture, and characterization of human pancreatic duct cells. Pancreas 8:248–254

    Article  CAS  PubMed  Google Scholar 

  47. Truckenmiller ME, Tornatore C, Wright RD, Dillon-Carter O, Meiners S, Geler HM, et al (1998) A truncated SV40 large T antigen lacking the p53 binding domain overcomes p53-induced growth arrest and immortalizes primary mesencephalic cells (abstract). Cell Tissue Res 291:175–189

    Article  CAS  PubMed  Google Scholar 

  48. Ulrich E, Boehmelt G, Bird A, Beug H (1992) Immortalization of conditionally transformed chicken cells: loss of normal p53 expression is an early step that is independent of cell transformation. Genes Dev 6:876–887

    Article  CAS  PubMed  Google Scholar 

  49. Webber MM, Bello D, Quader S (1997) Immortalized and tumorigenic adult human prostatic epithelial cell lines: characteristics and applications. Part 3: oncogenes, suppressor genes, and applications. Prostate 30:136–142

    Article  CAS  PubMed  Google Scholar 

  50. Wigler M, Pellicer A, Silverstein S, Axel R, Urlaub G, Chasin L (1979) DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci USA 76:1373–1376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17:5589–5611

    Google Scholar 

  52. Wrann M, Bodmer S, Martin Rd, Siepl C, Hofer-Warbinek R, Frei K, et al (1987) T cell suppressor factor from human glioblastoma cells is a 12.5 kd protein closely related to transforming growth factor-β. EMBO J 6:1633–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhang M, Schleicher RL, Fink AS, Gunter-Smith P, Savard C, Nguyen T, et al (2000) Growth and function of isolated canine pancreatic ductal cells. Pancreas 20:67–76

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Löhr.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00428-012-1221-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhr, M., Müller, P., Zauner, I. et al. Immortalized bovine pancreatic duct cells become tumorigenic after transfection with mutant k-ras. Virchows Arch 438, 581–590 (2001). https://doi.org/10.1007/s004280100397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004280100397

Keywords

Navigation