Skip to main content

Advertisement

Log in

Immune evasion phenotype is common in Richter transformation diffuse large B-cell lymphoma variant

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors (PD-1 inhibitors) have shown clinical activity in Richter transformation-diffuse large B-cell lymphoma variant (RT-DLBCL), thus providing for a novel therapeutic approach. The study group consists of 64 patients with RT-DLBCL. Expression of PD-1, PD-L1, CD30, and microsatellite instability (MSI) status (hMLH1, hMSH2, hMSH6, PMS1) was assessed using immunohistochemistry. EBV-encoded RNA (EBER) was evaluated using colorimetric in situ hybridization. PD-1 and PD-L1 expression levels were categorized on the basis of tumor cell expression as follows: negative (< 5%), positive to low-positive (5–50%), or high-positive (> 50%). An “immune evasion phenotype” (IEP) was defined as RT-DLBCL cases having high-positive expression of PD-1 and/or PD-L1 on tumor cells. The level of PD1-positive tumor-infiltrating lymphocytes (TILs) was estimated as a fraction of total lymphocytes and categorized as negative/low vs. brisk (> 20%). 28/64 (43.7%) patients were characterized as IEP+ RT-DLBCL. A brisk level of PD1+ TILs was significantly more common in IEP1+ compared with IEP- tumors (17/28, 60.7% vs. 5/34, 14.7%; p = 0.001). In addition, CD30 expression was significantly more common in IEP+ compared with IEP- RT-DLBCL (6/20, 30% vs. 1/27, 3.7%; p = 0.0320). Two (2/36; 5.5%) cases were positive for EBER, both IEP+. There was no significant difference between the two groups in terms of age, sex, or time to transformation. Assessment of mismatch repair proteins demonstrated absence of microsatellite instability (MSI) in all cases (18/18; 100%). Notably, patients with brisk PD1+ TILs had a significantly better OS compared to those with a negative/low infiltrate (p = 0.0285).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M, Mullighan CG, Pasqualucci L, Rabadan R, Dalla-Favera R (2013) Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med 210:2273–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rossi D, Spina V, Gaidano G (2018) Biology and treatment of Richter syndrome. Blood 131:2761–2772

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Dali Y, Hleuhel MH, da Cunha-Bang C, Brieghel C, Poulsen CB, Clasen-Linde E, Bentzen HHN, Frederiksen H, Christiansen I, Nielsen LH, Enggaard L, Helleberg M, Clausen M, Frederiksen M, Pedersen RS, Niemann CU, Andersen MA (2020) Richter’s transformation in patients with chronic lymphocytic leukaemia: a Nationwide Epidemiological Study. Leuk Lymphoma 61:1435–1444

    Article  PubMed  Google Scholar 

  4. Wang Y, Tschautscher MA, Rabe KG, Call TG, Leis JF, Kenderian SS, Kay NE, Muchtar E, Van Dyke DL, Koehler AB, Schwager SM, Slager SL, Parikh SA, Ding W (2020) Clinical characteristics and outcomes of Richter transformation: experience of 204 patients from a single center. Haematologica 105:765–773

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chigrinova E, Rinaldi A, Kwee I, Rossi D, Rancoita PM, Strefford JC, Oscier D, Stamatopoulos K, Papadaki T, Berger F, Young KH, Murray F, Rosenquist R, Greiner TC, Chan WC, Orlandi EM, Lucioni M, Marasca R, Inghirami G et al (2013) Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 122:2673–2682

    Article  CAS  PubMed  Google Scholar 

  6. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, Lawrence MS, Roemer MGM, Li AJ, Ziepert M, Staiger AM, Wala JA, Ducar MD, Leshchiner I, Rheinbay E, Taylor-Weiner A, Coughlin CA, Hess JM, Pedamallu CS et al (2018) Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer AL, Hodson DJ, Xiao W, Yu X, Yang Y, Zhao H, Xu W, Liu X, Zhou B, Du W et al (2018) Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 378:1396–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM (2020) A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 37:551–68 e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. El Hussein S, Shaw KRM, Vega F (2020) Evolving insights into the genomic complexity and immune landscape of diffuse large B-cell lymphoma: opportunities for novel biomarkers. Mod Pathol 33:2422–2436

    Article  PubMed  Google Scholar 

  10. Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 30:802–810

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xerri L, Chetaille B, Serriari N, Attias C, Guillaume Y, Arnoulet C, Olive D (2008) Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol 39:1050–1058

    Article  CAS  PubMed  Google Scholar 

  12. Muenst S, Hoeller S, Willi N, Dirnhofera S, Tzankov A (2010) Diagnostic and prognostic utility of PD-1 in B cell lymphomas. Dis Markers 29:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, Sugita Y, Yufu Y, Choi I, Abe Y, Uike N, Nagafuji K, Okamura T, Akashi K, Takayanagi R, Shiratsuchi M, Ohshima K (2015) Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 126:2193–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Sun R, Miao Y, Tran T, Adams L, Roscoe N, Xu B, Manyam GC, Tan X, Zhang H, Xiao M, Tzankov A, Visco C, Dybkaer K, Bhagat G, Tam W, Hsi ED, van Krieken JH, You H et al (2019) PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognostic impact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the International DLBCL Consortium Program. Mod Pathol 32:741–754

    Article  CAS  PubMed  Google Scholar 

  15. Xing W, Dresser K, Zhang R, Evens AM, Yu H, Woda BA, Chen BJ (2016) PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications. Oncotarget 7:59976–59986

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, Shanafelt TD, Sinha S, Le-Rademacher J, Feldman AL, Habermann TM, Witzig TE, Wiseman GA, Lin Y, Asmus E, Nowakowski GS, Conte MJ, Bowen DA, Aitken CN et al (2017) Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 129:3419–3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain NBS, Thompson PA et al (2016) Nivolumab combined with ibrutinib for CLL and Richter transformation: a phase II trial [abstract]. Blood 128(22):Abstract 59

    Article  Google Scholar 

  18. Rogers KA, Huang Y, Dotson E, Lundberg J, Andritsos LA, Awan FT, Woyach JA, Byrd JC (2019) Use of PD-1 (PDCD1) inhibitors for the treatment of Richter syndrome: experience at a single academic centre. Br J Haematol 185:363–366

    Article  PubMed  Google Scholar 

  19. Younes A, Brody J, Carpio C, Lopez-Guillermo A, Ben-Yehuda D, Ferhanoglu B, Nagler A, Ozcan M, Avivi I, Bosch F, Caballero Barrigon MD, Hellmann A, Kuss B, Ma DDF, Demirkan F, Yagci M, Horowitz NA, Marlton P, Cordoba R et al (2019) Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol 6:e67–e78

    Article  PubMed  Google Scholar 

  20. Behdad A, Griffin B, Chen YH, Ma S, Kelemen K, Lu X, Chen QC (2019) PD-1 is highly expressed by neoplastic B-cells in Richter transformation. Br J Haematol 185:370–373

    Article  PubMed  Google Scholar 

  21. He R, Ding W, Viswanatha DS, Chen D, Shi M, Van Dyke D, Tian S, Dao LN, Parikh SA, Shanafelt TD, Call TG, Ansell SM, Leis JF, Mai M, Hanson CA, Rech KL (2018) PD-1 expression in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and large B-cell Richter transformation (DLBCL-RT): a characteristic feature of DLBCL-RT and potential surrogate marker for clonal relatedness. Am J Surg Pathol 42:843–854

    Article  PubMed  Google Scholar 

  22. Slack GW, Steidl C, Sehn LH, Gascoyne RD (2014) CD30 expression in de novo diffuse large B-cell lymphoma: a population-based study from British Columbia. Br J Haematol 167:608–617

    Article  CAS  PubMed  Google Scholar 

  23. Collie AMB, Hill BT, Manilich EA, Smith MR (2013) Hsi ED: CD30 immunohistochemical expression in diffuse large B-cell lymphoma is associated with decreased overall survival and the non-germinal center molecular subtype. Blood 122:4318

    Article  Google Scholar 

  24. Rassidakis G, Miao Y, Zhang J, Atsaves V, Kis L, Smedby KE, Li Y, Xu-Monette ZY, Young KH (2017) PD-L1 expression and gene amplification in CD30+ diffuse large B-cell lymphoma (DLBCL): significance of TP53 genetic impact and clinicopathologic characteristics. Blood 130:1475

    Google Scholar 

  25. Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B, Wu C (2019) Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 121:809–818

    Article  PubMed  PubMed Central  Google Scholar 

  26. El Hussein S, Daver N, Liu JL, Kornblau S, Fang H, Konoplev S, Kantarjian H, Khoury JD (2022) Microsatellite instability assessment by immunohistochemistry in acute myeloid leukemia: a reappraisal and review of the literature. Clin Lymphoma Myeloma Leuk 22:e386–ee91

    Article  PubMed  Google Scholar 

  27. Swerdlow SHCEHN, Jaffe ES, Pileri SA, Stein H, Thiele J (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th Edition edn. IARC, Lyon, France

    Google Scholar 

  28. Hao X, Wei X, Huang F, Wei Y, Zeng H, Xu L, Zhou Q, Feng R (2015) The expression of CD30 based on immunohistochemistry predicts inferior outcome in patients with diffuse large B-cell lymphoma. PLoS One 10:e0126615

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang HY (2017) Large B-cell lymphoma variant of Richter transformation originates in pseudoproliferation centers of small lymphocytic lymphoma. Blood 129:2592

    Article  CAS  PubMed  Google Scholar 

  30. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, Yu H, Fletcher CD, Freeman GJ, Shipp MA, Rodig SJ (2013) PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 19:3462–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gravelle P, Burroni B, Pericart S, Rossi C, Bezombes C, Tosolini M, Damotte D, Brousset P, Fournie JJ, Laurent C (2017) Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies. Oncotarget 8:44960–44975

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kwon D, Kim S, Kim PJ, Go H, Nam SJ, Paik JH, Kim YA, Kim TM, Heo DS, Kim CW, Jeon YK (2016) Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology 68:1079–1089

    Article  PubMed  Google Scholar 

  33. Garcia-Barchino MJ, Sarasquete ME, Panizo C, Morscio J, Martinez A, Alcoceba M, Fresquet V, Gonzalez-Farre B, Paiva B, Young KH, Robles EF, Roa S, Celay J, Larrayoz M, Rossi D, Gaidano G, Montes-Moreno S, Piris MA, Balanzategui A et al (2018) Richter transformation driven by Epstein-Barr virus reactivation during therapy-related immunosuppression in chronic lymphocytic leukaemia. J Pathol 245:61–73

    Article  CAS  PubMed  Google Scholar 

  34. Ok CY, Li L, Xu-Monette ZY, Visco C, Tzankov A, Manyam GC, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Chen J, Richards KL, Hsi ED, Choi WW, van Krieken JH, Huh J, Ai W et al (2014) Prevalence and clinical implications of epstein-barr virus infection in de novo diffuse large B-cell lymphoma in Western countries. Clin Cancer Res 20:2338–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu S, Xu-Monette ZY, Balasubramanyam A, Manyam GC, Visco C, Tzankov A, Liu WM, Miranda RN, Zhang L, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WW, Han van Krieken J et al (2013) CD30 expression defines a novel subgroup of diffuse large B-cell lymphoma with favorable prognosis and distinct gene expression signature: a report from the International DLBCL Rituximab-CHOP Consortium Program Study. Blood 121:2715–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartlett NL, Smith MR, Siddiqi T, Advani RH, O'Connor OA, Sharman JP, Feldman T, Savage KJ, Shustov AR, Diefenbach CS, Oki Y, Palanca-Wessels MC, Uttarwar M, Li M, Yang J, Jacobsen ED (2017) Brentuximab vedotin activity in diffuse large B-cell lymphoma with CD30 undetectable by visual assessment of conventional immunohistochemistry. Leuk Lymphoma 58:1607–1616

    Article  CAS  PubMed  Google Scholar 

  37. Jacobsen ED, Sharman JP, Oki Y, Advani RH, Winter JN, Bello CM, Spitzer G, Palanca-Wessels MC, Kennedy DA, Levine P, Yang J, Bartlett NL (2015) Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood 125:1394–1402

    Article  CAS  PubMed  Google Scholar 

  38. Budde LE, Halwani A, Yasenchak CA, Farber CM, Burke JM, Fayad LE, Holkova B, Knapp M, Kolibaba KS, Advani RH, Ansell SM, Patel-Donnelly D, Yimer HA, Smith SE, Levy MY, Seetharam M, Belada D, Brooks D, Kingsley EC, Klein LM, Wagner-Johnston N, Ruffner K, Bartlett NL (216) Results of an ongoing phase 2 study of brentuximab vedotin with Rchp as frontline therapy in patients with high-intermediate/high-risk diffuse large B cell lymphoma (DLBCL). Blood 128:104

  39. Lemery S, Keegan P, Pazdur R (2017) First FDA approval agnostic of cancer site - when a biomarker defines the indication. N Engl J Med 377:1409–1412

    Article  PubMed  Google Scholar 

  40. Marcus L, Lemery SJ, Keegan P, Pazdur R (2019) FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 25:3753–3758

    Article  CAS  PubMed  Google Scholar 

  41. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A et al (2015) PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept, study development, and manuscript original draft: SEH, JDK. Experimental studies, data analysis, and resources: LJM, SG, PW, ES, HF, FZJ, WW, WF, RKS, HY, SL, JX, ZT, BT, NJ, WW, KP, and KB. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Siba El Hussein or Joseph D. Khoury.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Table 1.

Details of the immunohistochemistry staining platform of the markers studied. RTU*: Ready to use by the vendor (DOCX 13 kb)

Supplemental Figure 1.

Overall Survival by immune evasion status defined as follows: Cases demonstrating high-positive expression (>50%) of PD1 and/or PD-L1 on neoplastic cells. 0: Negative, 1: Positive (JPG 48 kb)

Supplemental Figure 2.

Overall Survival by PD1 expression in neoplastic cells. 0 : Negative (expressed on <5% of neoplastic cells), 1: Low positive (expressed on 5-20% of neoplastic cells), 2: Positive (expressed on 20-50% of neoplastic cells), 3: High positive (expressed on >50% of neoplastic cells) (JPG 51 kb)

Supplemental Figure 3.

Overall Survival by PD-L1 expression in neoplastic cells. 0 : Negative, 1: Low positive (expressed on 5-20% of neoplastic cells), 2: Positive (expressed on 20-50% of neoplastic cells), 3: High positive (expressed on >50% of neoplastic cells) (JPG 56 kb)

Supplemental Figure 4.

Overall Survival by CD30 expression in neoplastic cells. 0: Negative, 1: Positive (JPG 49 kb)

Supplemental Figure 5

a-b. (a) Illustration of a case of Richter transformation-diffuse large B-cell lymphoma variant (RT-DLBCL) with (b) retained mismatch protein expression (MLH1/PMS2 and MSH2/MSH6) by immunohistochemistry (i.e. Microsatellite stable) (PNG 7485 kb)

High Resolution Image (TIF 1840 kb)

Supplemental Figure 5b

(PNG 9876 kb)

High Resolution Image (TIF 2136 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hussein, S., Medeiros, L.J., Gruschkus, S.K. et al. Immune evasion phenotype is common in Richter transformation diffuse large B-cell lymphoma variant. Virchows Arch 482, 1011–1019 (2023). https://doi.org/10.1007/s00428-023-03520-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03520-x

Keywords

Navigation