Skip to main content
Log in

Comparison of histological and molecular features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2023

This article has been updated

Abstract

Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are pediatric B cell lymphomas with similar clinical characteristics but distinct histological features. We investigated the differences between pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma by comparing their histological and molecular characteristics. A total of 5 pediatric-type follicular lymphoma and 11 pediatric nodal marginal zone lymphoma patients were included in the study. In the histological review, 5 of the 16 cases showed overlapping morphological features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma; hence, they were reclassified as “mixed type.” In molecular analysis, using panel-based massively parallel sequencing, MAP2K1, TNFRSF14, and IRF8 mutations were found in 6, 3, and 2 of the 11 pediatric nodal marginal zone lymphoma patients, respectively, and IRF8 mutation was found in one of the five pediatric-type follicular lymphoma patients. There were no significant differences in genetic alterations established from the histologically reclassified diagnosis as well as the initial diagnosis. Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma showed morphological overlap in some cases, and no difference between the two was found upon molecular analysis. These findings suggest the possibility that pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are single entity pediatric B-cell lymphoma with broad morphological spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Swerdlow SH, Campo E, Harris LN, Jaffe ES, Pileri SA, Stein H, Thiele J (eds) (2017) WHO classification of tumours of haematohoietic and lymphoid tissues, revised 4th edn. IARC, Lyon 

  2. Martin-Guerrero I, Salaverria I, Burkhardt B, Szczepanowski M, Baudis M, Bens S, de Leval L, Garcia-Orad A, Horn H, Lisfeld J, Pellissery S, Klapper W, Oschlies I, Siebert R (2013) Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. Haematologica 98:1237–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozawa MG, Bhaduri A, Chisholm KM, Baker SA, Ma L, Zehnder JL, Luna-Fineman S, Link MP, Merker JD, Arber DA, Ohgami RS (2016) A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Mod Pathol 29:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Louissaint A Jr, Schafernak KT, Geyer JT, Kovach AE, Ghandi M, Gratzinger D, Roth CG, Paxton CN, Kim S, Namgyal C, Morin R, Morgan EA, Neuberg DS, South ST, Harris MH, Hasserjian RP, Hochberg EP, Garraway LA, Harris NL, Weinstock DM (2016) Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations. Blood 128:1093–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmidt J, Gong S, Marafioti T, Mankel B, Gonzalez-Farre B, Balagué O, Mozos A, Cabeçadas J, van der Walt J, Hoehn D, Rosenwald A, Ott G, Dojcinov S, Egan C, Nadeu F, Ramis-Zaldívar JE, Clot G, Bárcena C, Pérez-Alonso V et al (2016) Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood 128:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt J, Ramis-Zaldivar JE, Nadeu F, Gonzalez-Farre B, Navarro A, Egan C, Montes-Mojarro IA, Marafioti T, Cabeçadas J, van der Walt J, Dojcinov S, Rosenwald A, Ott G, Bonzheim I, Fend F, Campo E, Jaffe ES, Salaverria I, Quintanilla-Martinez L (2017) Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood 130:323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lovisa F, Binatti A, Coppe A, Primerano S, Carraro E, Pillon M, Pizzi M, Guzzardo V, Buffardi S, Porta F, Farruggia P, De Santis R, Bulian P, Basso G, Lazzari E, d’Amore ESG, Bortoluzzi S, Mussolin L (2019) A high definition picture of key genes and pathways mutated in pediatric follicular lymphoma. Haematologica 104:e406–e409

    Article  PubMed  PubMed Central  Google Scholar 

  8. Salmeron-Villalobos J, Egan C, Borgmann V, Muller I, Gonzalez-Farre B, Ramis-Zaldivar JE, Nann D, Balague O, Lopez-Guerra M, Colomer D, Oschlies I, Klapper W, Glaser S, Ko YH, Bonzheim I, Siebert R, Fend F, Pittaluga S, Campo E et al (2022) A unifying hypothesis for PNMZL and PTFL: morphological variants with a common molecular profile. Blood Adv 6:4661–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim S, Lim KY, Koh J, Bae JM, Yun H, Lee C, Kim YA, Paik JH, Jeon YK (2022) Pediatric-type indolent B-cell lymphomas with overlapping clinical, pathologic, and genetic features. Am J Surg Pathol 46:101397–1406

    Article  Google Scholar 

  10. Jung KS, Hong K-W, Jo HY, Choi J, Ban H-J, Cho SB, Chung M (2020) KRGDB: the large-scale variant database of 1722 Koreans based on whole genome sequencing. Database : the journal of biological databases and curation 2020:baz146. Database (Oxford) 2020:baz146

    Article  CAS  PubMed  Google Scholar 

  11. Oschlies I, Salaverria I, Mahn F, Meinhardt A, Zimmermann M, Woessmann W, Burkhardt B, Gesk S, Krams M, Reiter A, Siebert R, Klapper W (2010) Pediatric follicular lymphoma—a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin's Lymphoma--Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica 95:253–259

    Article  PubMed  Google Scholar 

  12. Louissaint A Jr, Ackerman AM, Dias-Santagata D, Ferry JA, Hochberg EP, Huang MS, Iafrate AJ, Lara DO, Pinkus GS, Salaverria I, Siddiquee Z, Siebert R, Weinstein HJ, Zukerberg LR, Harris NL, Hasserjian RP (2012) Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood 120:2395–2404

    Article  CAS  PubMed  Google Scholar 

  13. Liu Q, Salaverria I, Pittaluga S, Jegalian AG, Xi L, Siebert R, Raffeld M, Hewitt SM, Jaffe ES (2013) Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol 37:333–343

    Article  PubMed  PubMed Central  Google Scholar 

  14. Taddesse-Heath L, Pittaluga S, Sorbara L, Bussey M, Raffeld M, Jaffe ES (2003) Marginal zone B-cell lymphoma in children and young adults. Am J Surg Pathol 27:522–531

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rizzo KA, Streubel B, Pittaluga S, Chott A, Xi L, Raffeld M, Jaffe ES (2010) Marginal zone lymphomas in children and the young adult population; characterization of genetic aberrations by FISH and RT-PCR. Mod Pathol 23:866–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee CH, Melchers M, Wang H, Torrey TA, Slota R, Qi CF, Kim JY, Lugar P, Kong HJ, Farrington L, van der Zouwen B, Zhou JX, Lougaris V, Lipsky PE, Grammer AC, Morse HC 3rd (2006) Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J Exp Med 203:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy J Jr (2003) Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 101:1128–1140

    Article  CAS  PubMed  Google Scholar 

  18. Shin D-M, Lee C-H, Morse HC III (2011) IRF8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center B cells. PLOS ONE 6:e27384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tinguely M, Thies S, Frigerio S, Reineke T, Korol D, Zimmermann DR (2014) IRF8 is associated with germinal center B-cell-like type of diffuse large B-cell lymphoma and exceptionally involved in translocation t(14;16)(q32.33;q24.1). Leukemia & Lymphoma 55:136–142

    Article  CAS  Google Scholar 

  20. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, Kela I, Hopmans ES, Myklebust JH, Ji H, Plevritis SK, Levy R, Alizadeh AA (2013) Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121:1604–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Launay E, Pangault C, Bertrand P, Jardin F, Lamy T, Tilly H, Tarte K, Bastard C, Fest T (2012) High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia 26:559–562

    Article  CAS  PubMed  Google Scholar 

  22. Cheung KJ, Johnson NA, Affleck JG, Severson T, Steidl C, Ben-Neriah S, Schein J, Morin RD, Moore R, Shah SP, Qian H, Paul JE, Telenius A, Relander T, Lam W, Savage K, Connors JM, Brown C, Marra MA et al (2010) Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res 70:9166–9174

    Article  CAS  PubMed  Google Scholar 

  23. Karube K, Enjuanes A, Dlouhy I, Jares P, Martin-Garcia D, Nadeu F, Ordóñez GR, Rovira J, Clot G, Royo C, Navarro A, Gonzalez-Farre B, Vaghefi A, Castellano G, Rubio-Perez C, Tamborero D, Briones J, Salar A, Sancho JM et al (2018) Integrating genomic alterations in diffuse large B-cell lymphoma identifies new relevant pathways and potential therapeutic targets. Leukemia 32:675–684

    Article  CAS  PubMed  Google Scholar 

  24. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, Leppa S, Pasanen A, Meriranta L, Karjalainen-Lindsberg ML, Nørgaard P, Pedersen M, Gang AO, Høgdall E, Heavican TB, Lone W, Iqbal J, Qin Q, Li G et al (2017) Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171:481–494.e415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogelsberg A, Steinhilber J, Mankel B, Federmann B, Schmidt J, Montes-Mojarro IA, Hüttl K, Rodriguez-Pinilla M, Baskaran P, Nahnsen S, Piris MA, Ott G, Quintanilla-Martinez L, Bonzheim I, Fend F (2021) Genetic evolution of in situ follicular neoplasia to aggressive B-cell lymphoma of germinal center subtype. Haematologica 106:2673–2681

    Article  CAS  PubMed  Google Scholar 

  26. Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, Michielin O, Muehlethaler K, Speiser D, Beckmann JS, Xenarios I, Halazonetis TD, Jongeneel CV, Stevenson BJ, Antonarakis SE (2012) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics 44:133–139

    Article  CAS  Google Scholar 

  27. Choi YL, Soda M, Ueno T, Hamada T, Haruta H, Yamato A, Fukumura K, Ando M, Kawazu M, Yamashita Y, Mano H (2012) Oncogenic MAP2K1 mutations in human epithelial tumors. Carcinogenesis 33:956–961

    Article  CAS  PubMed  Google Scholar 

  28. Waterfall JJ, Arons E, Walker RL, Pineda M, Roth L, Killian JK, Abaan OD, Davis SR, Kreitman RJ, Meltzer PS (2014) High prevalence of MAP2K1 mutations in variant and IGHV4-34–expressing hairy-cell leukemias. Nature Genetics 46:8–10

    Article  CAS  PubMed  Google Scholar 

  29. Chakraborty R, Hampton OA, Shen X, Simko SJ, Shih A, Abhyankar H, Lim KP, Covington KR, Trevino L, Dewal N, Muzny DM, Doddapaneni H, Hu J, Wang L, Lupo PJ, Hicks MJ, Bonilla DL, Dwyer KC, Berres ML et al (2014) Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124:3007–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burotto M, Chiou VL, Lee J-M, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120:3446–3456

    Article  CAS  PubMed  Google Scholar 

  31. De Luca A, Maiello MR, D'Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16(Suppl 2):S17–S27

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. L. contributed to study design, data interpretation, and data analysis; created the figures; and led the write-up; J.-H. H., C. H. L., H.-S. P., S. K. M., H. L., and U. C. contributed to data analysis; S. E. Y., S. J. K, and W. S. K. contributed to data interpretation and data analysis; J. C. oversaw all aspects of study design, data interpretation, and the write-up.

Corresponding author

Correspondence to Junhun Cho.

Ethics declarations

Ethics approval and consent to participate

All methods were carried out in accordance with Helsinki declaration, and all protocols of this study were approved by the Institutional Review Board of Samsung Medical Center (IRB file number: SMC 2021-02-066-003).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to updated affiliation name

Supplementary Information

Supplementary file 1

Supplementary Table 1. The list of antibodies used for immunohistochemistry in this stud, Supplementary Table 2. Gene list included in HemaSCAN, Supplementary Table 3. The ratio of FoxP1-positive cells in the intrafollicular and extrafollicular areas of each case measured through digital image analysis (QuPath), Supplementary Table 4. FoxP1 positive rate according to reclassified diagnosis, Supplementary Table 5. Detailed information on genetic mutations of all 16 patients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Han, JH., Lee, C.H. et al. Comparison of histological and molecular features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Virchows Arch 482, 849–858 (2023). https://doi.org/10.1007/s00428-023-03493-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03493-x

Keywords

Navigation