Skip to main content

Advertisement

Log in

The International Consensus Classification of acute myeloid leukemia

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Acute myeloid leukemias (AMLs) are overlapping hematological neoplasms associated with rapid onset, progressive, and frequently chemo-resistant disease. At diagnosis, classification and risk stratification are critical for treatment decisions. A group with expertise in the clinical, pathologic, and genetic aspects of these disorders developed the International Consensus Classification (ICC) of acute leukemias. One of the major changes includes elimination of AML with myelodysplasia-related changes group, while creating new categories of AML with myelodysplasia-related cytogenetic abnormalities, AML with myelodysplasia-related gene mutations, and AML with mutated TP53. Most of recurrent genetic abnormalities, including mutations in NPM1, that define specific subtypes of AML have a lower requirement of ≥ 10% blasts in the bone marrow or blood, and a new category of MDS/AML is created for other case types with 10–19% blasts. Prior therapy, antecedent myeloid neoplasms or underlying germline genetic disorders predisposing to the development of AML are now recommended as qualifiers to the initial diagnosis of AML. With these changes, classification of AML is updated to include evolving genetic, clinical, and morphologic findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  Google Scholar 

  2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1976) Proposals for the classification of the acute leukaemias French-American-British (FAB) co-operative group. Br J Haematol 33(4):451–458

    Article  CAS  Google Scholar 

  3. Arber DA, Orazi A, Hasserjian RP (2022) International Consensus Classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood blood 2022015850. https://doi.org/10.1182/blood.2022015850.

  4. Vardiman J, Reichard K (2015) Acute myeloid leukemia with myelodysplasia-related changes. Am J Clin Pathol 144:29–43

    Article  CAS  Google Scholar 

  5. Montalban-Bravo G, Kanagal-Shamanna R, Class CA, Sasaki K, Ravandi F, Cortes JE, Daver N, Takahashi K, Short NJ, DiNardo CD, Jabbour E, Borthakur G, Naqvi K, Issa GC, Konopleva M, Khoury JD, Routbort M, Pierce S, Do KA, Bueso-Ramos C, Patel K, Kantarjian H, Garcia-Manero G, Kadia TM (2020) Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol 95(6):612–622

    Article  CAS  Google Scholar 

  6. Mannelli F, Ponziani V, Bonetti MI, Bencini S, Cutini I, Gianfaldoni G, Scappini B et al (2015) Multilineage dysplasia as assessed by immunophenotype has no impact on clinical-biological features and outcome of NPM1-mutated acute myeloid leukemiaExp. Hematol 43(10):869-879 e22

    CAS  Google Scholar 

  7. Devillier R, Mansat-De Mas V, Gelsi-Boyer V, Demur C, Murati A, Corre J, Prebet J, Bertoli S, Brecqueville M, Arnoulet C et al (2015) Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia-related changes. Oncotarget 6(10):8388–8396

    Article  Google Scholar 

  8. Miesner M, Haferlach C, Bacher U, Weiss T, Macijewski K, Kohlmann K et al (2010) Multilineage dysplasia (MLD) in acute myeloid leukemia (AML) correlates with MDS-related cytogenetic abnormalities and a prior history of MDS or MDS/MPN but has no independent prognostic relevance: a comparison of 408 cases classified as “AML not otherwise specified” (AML-NOS) or “AML with myelodysplasia-related changes” (AML-MRC). Blood 116(15):2742–2751

    Article  CAS  Google Scholar 

  9. Weinberg OK, Seetharam M, Ren L, Seo K, Ma L, Merker JD, Gotlib J, Zehnder JL, Arber DA (2009) Clinical characterization of acute myeloid leukemia with myelodysplasia-related changes as defined by the 2008 WHO classification system. Blood 113(9):1906–1908

    Article  CAS  Google Scholar 

  10. Cancer Genome Atlas Research Network Ley TJ Miller C, Ding L et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074

    Article  Google Scholar 

  11. Döhner H, Estey E, Grimwade D, Amadori S et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447

    Article  Google Scholar 

  12. Lindsley RC, Mar BG, Mazzola E, Grauman PV et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125:1367–1376

    Article  CAS  Google Scholar 

  13. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374:2209–2221

    Article  CAS  Google Scholar 

  14. Gao Y, Jia M, Mao Y, Cai H, Jiang X, Cao X, Zhou D, Li J (2022) Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia-related changes and de novo acute myeloid leukemia. Am J Clin Pathol 157(5):691–700

    Article  CAS  Google Scholar 

  15. Baer C, Walter W, Stengel A, Hutter S, Meggendorfer M, Kern W, Haferlach C, Haferlach T (2019) Molecular classification of AML-MRC reveals a distinct profile and identifies MRC-like patients with poor overall survival. Blood 134(Supplement 1):2735

    Article  Google Scholar 

  16. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MS et al (2009) AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114(26):5352–5361

    Article  CAS  Google Scholar 

  17. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH et al (2012) RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol 30(25):3109–3111

    Article  Google Scholar 

  18. Arber DA, Erba HP (2020) Diagnosis and treatment of patients with acute myeloid leukemia with myelodysplasia-related changes (AML-MRC). Am J Clin Pathol 154(6):731–741

    Article  CAS  Google Scholar 

  19. Seymour JF, Döhner H, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R et al (2017) Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer 17:852

    Article  Google Scholar 

  20. Koenig KL, Sahasrabudhe KD, Sigmund AM, Bhatnagar B (2020) AML with myelodysplasia-related changes: development, challenges, and treatment advances. Genes (Basel) 11(8):845

    Article  CAS  Google Scholar 

  21. Rogers HJ, Vardiman JW, Anastasi J, Raca G, Savage NM, Cherry AM, Arber DA et al (2014) Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica 99(5):821–9

    Article  Google Scholar 

  22. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK (2010) National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116:354–365

    Article  CAS  Google Scholar 

  23. Weinberg OK, Ohgami RS, Ma L, Seo K, Ren L, Gotlib J, Seetharam M, Cherry A, Arber DA (2014) Acute myeloid leukemia with monosomal karyotype: morphologic, immunophenotypic, and molecular findings. Am J Clin Pathol 142:190–195

    Article  Google Scholar 

  24. Kayser S, Zucknick M, Döhner K, Krauter J, Köhne CH, Horst HA et al (2012) Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood 119:551–558

    Article  CAS  Google Scholar 

  25. Breems DA, Putten WLJV, Greef GED, Zelderen-Bhola SLV, Gerssen-Schoorl KBJ, Mellink CHM et al (2008) Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 26:4791–4797

    Article  Google Scholar 

  26. Soupir CP, Vergilio JA, Dal Cin P, Muzikansky A, Kantarjian H, Jones D, Hasserjian RP (2007) Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol 127:642–650

    Article  Google Scholar 

  27. Wang HY, Rashidi HH (2016) The new clinicopathologic and molecular findings in myeloid neoplasms with inv(3)(q21q26)/t(3;3)(q21;q26.2). Arch Pathol Lab Med 140(12):1404–1410

    Article  CAS  Google Scholar 

  28. Summerer I, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A (2020) Prognosis of MECOM ( EVI1)-rearranged MDS and AML patients rather depends on accompanying molecular mutations than on blast count. Leuk Lymphoma 61(7):1756–1759

    Article  CAS  Google Scholar 

  29. Patel SS, Ho C, Ptashkin RN, Sadigh S, Bagg A, Geyer JT et al (2019) Clinicopathologic and genetic characterization of nonacute NPM1-mutated myeloid neoplasms. Blood Adv 3:1540–1545

    Article  CAS  Google Scholar 

  30. Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, Patel K, Ganan-Gomez I, Jabbour E et al (2019) NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv 3:922–933

    Article  CAS  Google Scholar 

  31. Keeshan K, Santilli G, Corradini F, Perrotti D, Calabretta B (2003) Transcription activation function of C/EBPalpha is required for induction of granulocytic differentiation. Blood 102(4):1267–1275

    Article  CAS  Google Scholar 

  32. Schmidt L, Heyes E, Grebien F (2020) Gain-of-function effects of N-terminal CEBPA mutations in acute myeloid leukemia. BioEssays 42(2):e1900178

    Article  Google Scholar 

  33. Grossmann V, Schnittger S, Schindela S, Klein H-U, Eder C, Dugas M, Kern W, Haferlach T, Haferlach C, Kohlmann A (2011) Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deep-sequencing technology. J Mol Diagn 13(2):129–136

    Article  CAS  Google Scholar 

  34. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CAJ, van Wim LJ, Putten P, Valk JM, Delwel R (2009) Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113(13):3088–3091

    Article  CAS  Google Scholar 

  35. Taube F, Georgi JA, Kramer M, Stasik S, Middeke JM, Röllig C et al (2022) CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood 139(1):87–103

    Article  CAS  Google Scholar 

  36. Tarlock K, Lamble AJ, Wang YC, Gerbing RB, Ries RE, Loken M et al (2021) CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children’s Oncology Group. Blood 138(13):1137–1147

    Article  CAS  Google Scholar 

  37. Kim MP, Lozano G (2018) Mutant p53 partners in crime. Cell Death Differ 25(1):161–168

    Article  CAS  Google Scholar 

  38. Bouaoun L, Sonkin D, Ardin M (2016) Monica Hollstein 3 4, Graham Byrnes 1, Jiri Zavadil 3, Magali Olivier 3 TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat 37(9):865–876

    Article  CAS  Google Scholar 

  39. Tazi Y, Arango-Ossa JE, Zhou Y, Bernard E, Thomas I, Gilkes A et al (2022) Unified classification and risk-stratification in acute myeloid leukemia. Nat Commun 13(1):4622

    Article  CAS  Google Scholar 

  40. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  Google Scholar 

  41. Marchesi V (2013) Genetics: the AML mutational landscape. Nat Rev Clin Oncol 10(6):305

    Google Scholar 

  42. Montalban-Bravo G, Benton CB, Wang SA, Ravandi F, Kadia T, Cortes J et al (2017) More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood 129:2584–2587

    Article  CAS  Google Scholar 

  43. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447

    Article  Google Scholar 

  44. Welch JS (2022) TP53 and the star-crossed lovers MDS and AML. Blood 139(15):2265–2266

    Article  CAS  Google Scholar 

  45. Ok CY, Patel KP, Garcia-Manero G, Routbort MJ, Peng J, Tang G, Goswami M, Young KH, Singh R, Medeiros LJ, Kantarjian HM, Luthra R, Wang SA (2015) TP53 mutation characteristics in therapy-related myelodysplastic syndromes and acute myeloid leukemia is similar to de novo diseases. J Hematol Oncol 8(8):45

    Article  Google Scholar 

  46. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS et al (2020) Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med 26:1549–1556

    Article  CAS  Google Scholar 

  47. Grob T, Al Hinai ASA, Sanders MA, Kavelaars FG, Rijken M, Gradowska PL et al (2022) Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 139(15):2347–2354

    Article  CAS  Google Scholar 

  48. Weinberg OK, Siddon A, Madanat YF, Gagan J, Arber DA, Dal Cin P et al (2022) TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML. Blood Adv 6(9):2847–2853

    Article  CAS  Google Scholar 

  49. Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP et al (2017) Initial diagnostic workup of acute leukemia: guideline from the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 141:1342–1393

    Article  Google Scholar 

  50. Hrusák O, Porwit-MacDonald A (2002) Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 16(7):1233–1258

    Article  Google Scholar 

  51. Liu YR, Zhu HH, Ruan GR, Qin YZ, Shi HX, Lai YY, Chang Y, Wang YZ, Lu D, Hao L, Li JL, Li LD, Jiang B, Huang XJ (2013) NPM1-mutated acute myeloid leukemia of monocytic or myeloid origin exhibit distinct immunophenotypes. Leuk Res 37(7):737–741

    Article  CAS  Google Scholar 

  52. Gupta M, Jafari K, Rajab A, Wei C, Mazur J, Tierens A, Hyjek E, Musani R, Porwit A (2021) Radar plots facilitate differential diagnosis of acute promyelocytic leukemia and NPM1+ acute myeloid leukemia by flow cytometry. Cytometry B Clin Cytom 100(4):409–420

    Article  CAS  Google Scholar 

  53. Matarraz S, Almeida J, Flores-Montero J, Lécrevisse Q, Guerri V, López A, Bárrena S, Van Der Velden V, Te Marvelde JG, Van Dongen JJM, Orfao A (2017) Introduction to the diagnosis and classification of monocytic-lineage leukemias by flow cytometry. Cytometry B Clin Cytom 92(3):218–227

    Article  CAS  Google Scholar 

  54. Merati G, Rossi M, Gallì A, Roncoroni E, Zibellini S, Rizzo E, Pietra D, Picone C, Rocca B, Cabrera CPT, Gelli E, Santacroce E, Arcaini L, Zappasodi P (2021) Enrichment of double RUNX1 mutations in acute leukemias of ambiguous lineage. Front Oncol 31(11):726637

    Article  Google Scholar 

  55. Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, Csete IS, DelGaudio NL, Derkach A, Baik J, Yanis S, Famulare CA, Patel M, Arcila ME, Stahl M, Rampal RK, Tallman MS, Zhang Y, Dogan A, Goldberg AD, Roshal M, Levine RL (2021) Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood 137(10):1377–1391

    Article  CAS  Google Scholar 

  56. Porwit A, Béné MC (2021) The plasmacytoid dendritic cell CD123+ compartment in acute leukemia with or without RUNX1 mutation: high inter-patient variability disclosed by immunophenotypic unsupervised analysis and clustering. Hemato 2:572–585

    Article  Google Scholar 

  57. Porwit A, van de Loosdrecht AA, Bettelheim P, Brodersen LE, Burbury K, Cremers E, Della Porta MG, Ireland R, Johansson U, Matarraz S, Ogata K, Orfao A, Preijers F, Psarra K, Subirá D, Valent P, van der Velden VH, Wells D, Westers TM, Kern W, Béné MC (2014) Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes-proposal from the International/European LeukemiaNet Working Group for Flow Cytometry in MDS. Leukemia 28(9):1793–1798

    Article  CAS  Google Scholar 

  58. Weinberg OK, Hasserjian RP, Li B, Pozdnyakova O (2017) Assessment of myeloid and monocytic dysplasia by flow cytometry in de novo AML helps define an AML with myelodysplasia-related changes category. J Clin Pathol 70(2):109–115

    Article  Google Scholar 

  59. Dannheim KC, Pozdnyakova O, Dal Cin P, Weinberg OK (2018) Immunophenotypic dysplasia and aberrant T-cell antigen expression in acute myeloid leukaemia with complex karyotype and TP53 mutations. J Clin Pathol 71(12):1051–1059

    Article  CAS  Google Scholar 

  60. Dimitriou M, Woll PS, Mortera-Blanco T, Karimi M, Wedge DC, Doolittle H, Douagi I, Papaemmanuil E, Jacobsen SE, Hellström-Lindberg E (2016) Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality. Oncotarget 7(45):72685–72698

    Article  Google Scholar 

  61. Chen X, Wood BL, Cherian S (2019) Immunophenotypic features of myeloid neoplasms associated with chromosome 7 abnormalities. Cytometry B Clin Cytom 96(4):300–309

    Article  CAS  Google Scholar 

  62. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, Chen W, Chen X, Chng WJ, Choi JK, Colmenero I, Coupland SE, Cross NCP, De Jong D, Elghetany MT, Takahashi E, Emile JF, Ferry J, Fogelstrand L, Fontenay M, Germing U, Gujral S, Haferlach T, Harrison C, Hodge JC, Hu S, Jansen JH, Kanagal-Shamanna R, Kantarjian HM, Kratz CP, Li XQ, Lim MS, Loeb K, Loghavi S, Marcogliese A, Meshinchi S, Michaels P, Naresh KN, Natkunam Y, Nejati R, Ott G, Padron E, Patel KP, Patkar N, Picarsic J, Platzbecker U, Roberts I, Schuh A, Sewell W, Siebert R, Tembhare P, Tyner J, Verstovsek S, Wang W, Wood B, Xiao W, Yeung C, Hochhaus A (2022) The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36(7):1703–1719

    Article  Google Scholar 

  63. Weinberg OK, Arber DA (2022) How I diagnose acute leukemia of ambiguous lineage. Am J Clin Pathol 158(1):27–34

    Article  Google Scholar 

  64. Béné MC, Porwit A (2022) Mixed phenotype/lineage leukemia: has anything changed for 2021 on diagnosis, classification, and treatment? Curr Oncol Rep 24(8):1015–1022

    Article  Google Scholar 

  65. Alexander TB, Orgel E (2021) Mixed phenotype acute leukemia: current approaches to diagnosis and treatment. Curr Oncol Rep 23(2):22

    Article  Google Scholar 

  66. Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, Payne-Turner D, Yoshihara H, Loh ML, Horan J, Buldini B, Basso G, Elitzur S, de Haas V, Zwaan CM, Yeoh A, Reinhardt D, Tomizawa D, Kiyokawa N, Lammens T, De Moerloose B, Catchpoole D, Hori H, Moorman A, Moore AS, Hrusak O, Meshinchi S, Orgel E, Devidas M, Borowitz M, Wood B, Heerema NA, Carrol A, Yang YL, Smith MA, Davidsen TM, Hermida LC, Gesuwan P, Marra MA, Ma Y, Mungall AJ, Moore RA, Jones SJM, Valentine M, Janke LJ, Rubnitz JE, Pui CH, Ding L, Liu Y, Zhang J, Nichols KE, Downing JR, Cao X, Shi L, Pounds S, Newman S, Pei D, Guidry Auvil JM, Gerhard DS, Hunger SP, Inaba H, Mullighan CG (2018) The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562(7727):373–379

    Article  CAS  Google Scholar 

  67. Bertoli S, Bérard E, Huguet F, Huynh A, Tavitian A, Vergez F et al (2013) Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia. Blood 121(14):2618–2626

    Article  CAS  Google Scholar 

  68. Burd A, Levine RL, Ruppert AS, Mims AS, Borate U, Stein EM (2020) Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nat Med 26(12):1852–1858. https://doi.org/10.1038/s41591-020-1089-8

    Article  CAS  Google Scholar 

  69. Schuurhuis GJ, Heuser M, Freeman S et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131(12):1275–1291

    Article  CAS  Google Scholar 

  70. Short NJ, Zhou S, Fu C et al (2020) Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: a systematic review and metaanalysis. JAMA Oncol 6(12):1890–1899

    Article  Google Scholar 

  71. Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, Tettero JM, Bachas C, Baer C, Béné MC, Bücklein V, Czyz A, Denys B, Dillon R, Feuring-Buske M, Guzman ML, Haferlach T, Han L, Herzig JK, Jorgensen JL, Kern W, Konopleva MY, Lacombe F, Libura M, Majchrzak A, Maurillo L, Ofran Y, Philippe J, Plesa A, Preudhomme C, Ravandi F, Roumier C, Subklewe M, Thol F, van de Loosdrecht AA, van der Reijden BA, Venditti A, Wierzbowska A, Valk PJM, Wood BL, Walter RB, Thiede C, Döhner K, Roboz GJ, Cloos J (2021) 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 138(26):2753–2767

    Article  CAS  Google Scholar 

  72. Khaldoyanidi SK, Hindoyan A, Stein A, Subklewe M (2022) Leukemic stem cells as a target for eliminating acute myeloid leukemia: gaps in translational research. Crit Rev Oncol Hematol 175:103710

    Article  Google Scholar 

  73. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJ (2003) Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 17(12):2318–2357

    Article  CAS  Google Scholar 

  74. Pettersson L, Chen Y, George AM, Rigo R, Lazarevic V, Juliusson G, Saal LH, Ehinger M (2020) Subclonal patterns in follow-up of acute myeloid leukemia combining whole exome sequencing and ultrasensitive IBSAFE digital droplet analysis. Leuk Lymphoma 61(9):2168–2179

    Article  CAS  Google Scholar 

  75. Galimberti S, Balducci S, Guerrini F, Del Re M, Cacciola R (2022) Digital droplet PCR in hematologic malignancies: a new useful molecular tool. Diagnostics (Basel) 12(6):1305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OW, AP, and DA wrote the manuscript. AO, RH, KF, and ED all contributed to the discussion of issues raised in the manuscript and extensively edited the manuscript. All authors have made substantial contributions to this review, have read and approved the final version submitted, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Olga K. Weinberg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinberg, O.K., Porwit, A., Orazi, A. et al. The International Consensus Classification of acute myeloid leukemia. Virchows Arch 482, 27–37 (2023). https://doi.org/10.1007/s00428-022-03430-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03430-4

Keywords

Navigation