Skip to main content

Advertisement

Log in

Classification and diagnostic evaluation of nodal T- and NK-cell lymphomas

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract 

Nodal T- and NK-cell lymphomas are among the most frequent T-cell malignancies and most subtypes have aggressive clinical behavior. Evolving understanding of the biology and molecular characteristics of these lymphomas, as well as the development of new precision therapy approaches, underscores the importance of ongoing updates to the classification and diagnostic evaluation of this group of malignancies. Here, we discuss the classification of nodal T- and NK-cell lymphomas based on the 2022 International Consensus Classification of Mature Lymphoid Neoplasms (2022 ICC). Lymphomas of T-follicular helper cell origin are now grouped into a single entity, follicular helper T-cell lymphoma (TFH lymphoma), with three subtypes (angioimmunoblastic-type, follicular-type, and not otherwise specified), reflecting their common cellular origin and shared molecular and clinical characteristics. Classification of anaplastic large cell lymphoma (ALCL) remains essentially unchanged; DUSP22-rearranged cases are now considered a genetic subtype of ALK-negative ALCL. Primary nodal EBV-positive T-/NK-cell lymphoma is introduced as a new provisional entity; these cases were previously considered a variant of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS). PTCL, NOS remains a diagnosis of exclusion, with evolving molecular data indicating the presence of distinct subgroups, including PTCL-TBX21, PTCL-GATA3, and EBV-negative cytotoxic PTCLs. We also discuss diagnostic strategies to facilitate the 2022 ICC classification among nodal T- and NK-cell lymphomas and the distinction from nodal involvement by extranodal neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Campo E, Jaffe ES, Cook JR et al (2022) The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood. https://doi.org/10.1182/blood.2022015851

    Article  Google Scholar 

  2. Swerdlow S, Campo E, Harris N, et al (eds) (2017) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer, Lyon

  3. de Leval L, Rickman DS, Thielen C et al (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109:4952–4963

    Article  Google Scholar 

  4. Piccaluga PP, Agostinelli C, Califano A et al (2007) Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 67:10703–10710

    Article  CAS  Google Scholar 

  5. Dobay MP, Lemonnier F, Missiaglia E et al (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102:e148–e151. https://doi.org/10.3324/haematol.2016.158428

    Article  CAS  Google Scholar 

  6. Swerdlow S, Campo E, Harris N, et al. (eds) (2008) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer, Lyon

  7. Rodriguez M, Alonso-Alonso R, Tomas-Roca L et al (2021) Peripheral T-cell lymphoma: molecular profiling recognizes subclasses and identifies prognostic markers. Blood Adv 5:5588–5598. https://doi.org/10.1182/bloodadvances.2021005171

    Article  CAS  Google Scholar 

  8. Vallois D, Dobay MP, Morin RD et al (2016) Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128:1490–1502. https://doi.org/10.1182/blood-2016-02-698977

    Article  CAS  Google Scholar 

  9. Lewis NE, Petrova-Drus K, Huet S et al (2020) Clonal hematopoiesis in angioimmunoblastic T-cell lymphoma with divergent evolution to myeloid neoplasms. Blood Adv 4:2261–2271. https://doi.org/10.1182/bloodadvances.2020001636

    Article  CAS  Google Scholar 

  10. Drieux F, Ruminy P, Sater V et al (2021) Detection of gene fusion transcripts in peripheral T-cell lymphoma using a multiplexed targeted sequencing assay. J Mol Diagn 23:929–940. https://doi.org/10.1016/j.jmoldx.2021.04.013

    Article  CAS  Google Scholar 

  11. Steinhilber J, Mederake M, Bonzheim I et al (2019) The pathological features of angioimmunoblastic T-cell lymphomas with IDH2(R172) mutations. Mod Pathol 32:1123–1134. https://doi.org/10.1038/s41379-019-0254-4

    Article  CAS  Google Scholar 

  12. Streubel B, Vinatzer U, Willheim M et al (2006) Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20:313–318

    Article  CAS  Google Scholar 

  13. Falchi L, Ma H, Klein S et al (2021) Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: a multicenter phase 2 study. Blood 137:2161–2170. https://doi.org/10.1182/blood.2020009004

    Article  CAS  Google Scholar 

  14. Lemonnier F, Dupuis J, Sujobert P et al (2018) Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood 132:2305–2309. https://doi.org/10.1182/blood-2018-04-840538

    Article  CAS  Google Scholar 

  15. Ghione P, Faruque P, Mehta-Shah N et al (2020) T follicular helper phenotype predicts response to histone deacetylase inhibitors in relapsed/refractory peripheral T-cell lymphoma. Blood Adv 4:4640–4647. https://doi.org/10.1182/bloodadvances.2020002396

    Article  CAS  Google Scholar 

  16. Basha BM, Bryant SC, Rech KL et al (2019) Application of a 5 marker panel to the routine diagnosis of peripheral T-cell lymphoma with t-follicular helper phenotype. Am J Surg Pathol 43:1282–1290. https://doi.org/10.1097/PAS.0000000000001315

    Article  Google Scholar 

  17. Syrykh C, Gorez P, Pericart S et al (2021) Molecular diagnosis of T-cell lymphoma: a correlative study of PCR-based T-cell clonality assessment and targeted NGS. Blood Adv 5:4590–4593. https://doi.org/10.1182/bloodadvances.2021005249

    Article  CAS  Google Scholar 

  18. Amador C, Bouska A, Wright G, et al (2022) Gene expression signatures for the accurate diagnosis of peripheral T-cell lymphoma entities in the routine clinical practice J Clin Oncol:JCO2102707. https://doi.org/10.1200/JCO.21.02707

  19. Alikhan M, Song JY, Sohani AR et al (2016) Peripheral T-cell lymphomas of follicular helper T-cell type frequently display an aberrant CD3(-/dim)CD4(+) population by flow cytometry: an important clue to the diagnosis of a Hodgkin lymphoma mimic. Mod Pathol 29:1173–1182. https://doi.org/10.1038/modpathol.2016.113

    Article  CAS  Google Scholar 

  20. Xie Y, Jaffe ES (2021) How I diagnose angioimmunoblastic T-cell lymphoma. Am J Clin Pathol 156:1–14. https://doi.org/10.1093/ajcp/aqab090

    Article  CAS  Google Scholar 

  21. Abukhiran I, Syrbu SI, Holman CJ (2021) Markers of follicular helper T cells are occasionally expressed in T-cell or histiocyte-rich large B-cell lymphoma, classic Hodgkin lymphoma, and atypical paracortical hyperplasia a diagnostic pitfall for T-cell lymphomas of T follicular helper origin. Am J Clin Pathol 156:409–426. https://doi.org/10.1093/ajcp/aqaa249

    Article  CAS  Google Scholar 

  22. Egan C, Laurent C, Alejo JC et al (2020) Expansion of PD1-positive T cells in nodal marginal zone lymphoma: a potential diagnostic pitfall. Am J Surg Pathol 44:657–664. https://doi.org/10.1097/PAS.0000000000001414

    Article  Google Scholar 

  23. Benharroch D, Meguerian-Bedoyan Z, Lamant L et al (1998) ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 91:2076–2084

    Article  CAS  Google Scholar 

  24. Larose H, Prokoph N, Matthews JD, et al. (2020) Whole Exome Sequencing reveals NOTCH1 mutations in anaplastic large cell lymphoma and points to Notch both as a key pathway and a potential therapeutic target Haematologica. https://doi.org/10.3324/haematol.2019.238766

  25. Crescenzo R, Abate F, Lasorsa E et al (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27:516–532. https://doi.org/10.1016/j.ccell.2015.03.006

    Article  CAS  Google Scholar 

  26. Hu G, Dasari S, Asmann YW et al (2018) Targetable fusions of the FRK tyrosine kinase in ALK-negative anaplastic large cell lymphoma. Leukemia 32:565–569. https://doi.org/10.1038/leu.2017.309

    Article  CAS  Google Scholar 

  27. Fitzpatrick MJ, Massoth LR, Marcus C et al (2021) JAK2 Rearrangements are a recurrent alteration in CD30+ systemic T-cell lymphomas with anaplastic morphology. Am J Surg Pathol 45:895–904. https://doi.org/10.1097/PAS.0000000000001708

    Article  Google Scholar 

  28. Melard P, Idrissi Y, Andrique L et al (2016) Molecular alterations and tumor suppressive function of the DUSP22 (dual specificity phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget. https://doi.org/10.18632/oncotarget.11930

    Article  Google Scholar 

  29. Feldman AL, Dogan A, Smith DI et al (2011) Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively-parallel genomic sequencing. Blood 117:915–919

    Article  CAS  Google Scholar 

  30. Li JP, Yang CY, Chuang HC et al (2014) The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck. Nat Commun 5:3618. https://doi.org/10.1038/ncomms4618

    Article  CAS  Google Scholar 

  31. Luchtel RA, Dasari S, Oishi N et al (2018) Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:1386–1398. https://doi.org/10.1182/blood-2018-03-838524

    Article  CAS  Google Scholar 

  32. Luchtel RA, Zimmermann MT, Hu G et al (2019) Recurrent MSC (E116K) mutations in ALK-negative anaplastic large cell lymphoma. Blood 133:2776–2789. https://doi.org/10.1182/blood.2019000626

    Article  CAS  Google Scholar 

  33. King RL, Dao LN, McPhail ED et al (2016) Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol 40:36–43. https://doi.org/10.1097/PAS.0000000000000500

    Article  Google Scholar 

  34. Parrilla Castellar ER, Jaffe ES, Said JW et al (2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124:1473–1480. https://doi.org/10.1182/blood-2014-04-571091

    Article  CAS  Google Scholar 

  35. Hapgood G, Ben-Neriah S, Mottok A et al (2019) Identification of high-risk DUSP22-rearranged ALK-negative anaplastic large cell lymphoma. Br J Haematol 186:e28–e31. https://doi.org/10.1111/bjh.15860

    Article  Google Scholar 

  36. Parrilla Castellar E, Grogg K, Law M et al (2012) Rearrangements at the 6p253 locus identify a subset of systemic ALK-negative anaplastic large cell lymphomas with favorable prognosis. Lab Invest 92:359A (abstract)

    Google Scholar 

  37. Boi M, Rinaldi A, Kwee I, et al. (2013) PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma Blood 122:2683–2693. https://doi.org/10.1182/blood-2013-04-497933

  38. Scarfo I, Pellegrino E, Mereu E et al (2016) Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 127:221–232. https://doi.org/10.1182/blood-2014-12-614503

    Article  CAS  Google Scholar 

  39. Bonzheim I, Geissinger E, Roth S et al (2004) Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood 104:3358–3360

    Article  CAS  Google Scholar 

  40. Malcolm TI, Villarese P, Fairbairn CJ et al (2016) Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun 7:10087. https://doi.org/10.1038/ncomms10087

    Article  CAS  Google Scholar 

  41. Vasmatzis G, Johnson SH, Knudson RA et al (2012) Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 120:2280–2289. https://doi.org/10.1182/blood-2012-03-419937

    Article  CAS  Google Scholar 

  42. Iqbal J, Wright G, Wang C et al (2014) Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123:2915–2923. https://doi.org/10.1182/blood-2013-11-536359

    Article  CAS  Google Scholar 

  43. Amador C, Greiner TC, Heavican TB et al (2019) Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry. Blood 134:2159–2170. https://doi.org/10.1182/blood.2019000779

    Article  Google Scholar 

  44. Heavican TB, Bouska A, Yu J et al (2019) Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133:1664–1676. https://doi.org/10.1182/blood-2018-09-872549

    Article  CAS  Google Scholar 

  45. Laginestra MA, Cascione L, Motta G et al (2020) Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol 33:179–187. https://doi.org/10.1038/s41379-019-0279-8

    Article  CAS  Google Scholar 

  46. de Leval L, Alizadeh AA, Bergsagel PL et al (2022) Genomic profiling for clinical decision making in lymphoid neoplasms. Blood. https://doi.org/10.1182/blood.2022015854

    Article  Google Scholar 

  47. Nicolae A, Bouilly J, Lara D et al (2022) Nodal cytotoxic peripheral T-cell lymphoma occurs frequently in the clinical setting of immunodysregulation and is associated with recurrent epigenetic alterations. Mod Pathol. https://doi.org/10.1038/s41379-022-01022-w

    Article  Google Scholar 

  48. Ng SB, Chung TH, Kato S et al (2018) Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica 103:278–287. https://doi.org/10.3324/haematol.2017.180430

    Article  CAS  Google Scholar 

  49. Wai CMM, Chen S, Phyu T et al (2022) Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica. https://doi.org/10.3324/haematol.2021.280003

    Article  Google Scholar 

  50. Kato S, Asano N, Miyata-Takata T et al (2015) T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases. Am J Surg Pathol 39:462–471. https://doi.org/10.1097/PAS.0000000000000323

    Article  Google Scholar 

  51. Kato S, Yamashita D (2017) Nakamura S (2020) Nodal EBV+ cytotoxic T-cell lymphoma: a literature review based on the WHO classification. J Clin Exp Hematop 60:30–36. https://doi.org/10.3960/jslrt.20001

    Article  Google Scholar 

  52. Drieux F, Ruminy P, Abdel-Sater A et al (2020) Defining signatures of peripheral T-cell lymphoma with a targeted 20-marker gene expression profiling assay. Haematologica 105:1582–1592. https://doi.org/10.3324/haematol.2019.226647

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ALF, CL, MN, SN, WCC, LdL, and PG are members of the Clinical Advisory Committee that prepared the 2022 ICC classification of lymphoid neoplasms. ALF drafted the manuscript. CL, MN, SN, WCC, LdL, and PG reviewed and corrected the manuscript.

The authors declare that they have followed the principles of ethical and professional conduct.

Corresponding author

Correspondence to Andrew L. Feldman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, A.L., Laurent, C., Narbaitz, M. et al. Classification and diagnostic evaluation of nodal T- and NK-cell lymphomas. Virchows Arch 482, 265–279 (2023). https://doi.org/10.1007/s00428-022-03412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03412-6

Keywords

Navigation