Skip to main content

Advertisement

Log in

Updates on eosinophilic disorders

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

This review addresses changes and updates in eosinophilic disorders under the International Consensus Classification (ICC). The previous category of myeloid/lymphoid neoplasm with eosinophilia (M/LN-eo) and a specific gene rearrangement is changed to M/LN-eo with tyrosine kinase gene fusions to reflect the underlying genetic lesions. Two new members, M/LN-eo with ETV6::ABL1 fusion and M/LN-eo with various FLT3 fusions, have been added to the category; and M/LN-eo with PCM1::JAK2 and its genetic variants ETV6::JAK2 and BCR::JAK2 are recognized as a formal entity from their former provisional status. The updated understanding of the clinical and molecular genetic features of PDGFRA, PDGFRB and FGFR1 neoplasms is summarized. Clear guidance as to how to distinguish these fusion gene–associated disorders from the overlapping entities of Ph-like B-acute lymphoblastic leukemia (ALL), de novo T-ALL, and systemic mastocytosis is provided. Bone marrow morphology now constitutes one of the diagnostic criteria of chronic eosinophilic leukemia, NOS (CEL, NOS), and idiopathic hypereosinophilia/hypereosinophilic syndrome (HE/HES), facilitating the separation of a true myeloid neoplasm with characteristic eosinophilic proliferation from those of unknown etiology and not attributable to a myeloid neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valent P et al (2012) Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 130(3):607–61 e9

    Article  Google Scholar 

  2. Hu Z et al (2018) A multimodality work-up of patients with Hypereosinophilia. Am J Hematol 93(11):1337–1346

    Article  CAS  Google Scholar 

  3. Shomali W, Gotlib J (2022) World Health Organization-defined eosinophilic disorders: 2022 update on diagnosis, risk stratification, and management. Am J Hematol 97(1):129–148

    Article  CAS  Google Scholar 

  4. Butt NM et al (2017) Guideline for the investigation and management of eosinophilia. Br J Haematol 176(4):553–572

    Article  Google Scholar 

  5. Arber DA et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    Article  CAS  Google Scholar 

  6. Arber DA et al (2022) International consensus classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood. https://doi.org/10.1182/blood.2022015850

  7. Bain, BJ, Gilliland, DG, Horny, HP, Vardiman, JW. (2008) Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1, in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, SH. Swerdlow, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, Thiele, J, Vardiman, JW, Editor. 2008, International Agency for Research on Cancer (IARC): Lyon. p. 68 - 73.

  8. Reiter A, Gotlib J (2017) Myeloid neoplasms with eosinophilia. Blood 129(6):704–714

    Article  CAS  Google Scholar 

  9. Yao J et al (2021) Myeloid/lymphoid neoplasms with eosinophilia/ basophilia and ETV6-ABL1 fusion: cell-of-origin and response to tyrosine kinase inhibition. Haematologica 106(2):614–618

    Google Scholar 

  10. Schwaab J et al (2020) Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am J Hematol 95(7):824–833

    Article  CAS  Google Scholar 

  11. Xie W et al (2018) Myeloproliferative neoplasm with ABL1/ETV6 rearrangement mimics chronic myeloid leukemia and responds to tyrosine kinase inhibitors. Cancer Genet 228–229:41–46

    Article  Google Scholar 

  12. Zaliova M et al (2016) Characterization of leukemias with ETV6-ABL1 fusion. Haematologica 101(9):1082–1093

    Article  CAS  Google Scholar 

  13. Perna F et al (2011) ETV6-ABL1-positive “chronic myeloid leukemia”: clinical and molecular response to tyrosine kinase inhibition. Haematologica 96(2):342–343

    Article  CAS  Google Scholar 

  14. Janssen JW et al (1995) The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event. Br J Haematol 90(1):222–224

    Article  CAS  Google Scholar 

  15. Million RP et al (2004) A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase. Mol Cell Biol 24(11):4685–4695

    Article  CAS  Google Scholar 

  16. Ernst T et al (2011) Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia. Br J Haematol 153(1):43–46

    Article  CAS  Google Scholar 

  17. Tasian SK, Loh ML, Hunger SP (2017) Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 130(19):2064–2072

    Article  CAS  Google Scholar 

  18. De Braekeleer E et al (2011) ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 86(5):361–371

    Article  Google Scholar 

  19. Cessna MH et al (2019) Chronic myelomonocytic leukemia with ETV6-ABL1 rearrangement and SMC1A mutation. Cancer Genet 238:31–36

    Article  CAS  Google Scholar 

  20. Hosseini N et al (2014) ETV6/FLT3 fusion in a mixed-phenotype acute leukemia arising in lymph nodes in a patient with myeloproliferative neoplasm with eosinophilia. J Hematopath 7:7

    Article  Google Scholar 

  21. Walz C et al (2011) Response of ETV6-FLT3-positive myeloid/lymphoid neoplasm with eosinophilia to inhibitors of FMS-like tyrosine kinase 3. Blood 118(8):2239–2242

    Article  CAS  Google Scholar 

  22. Chonabayashi K et al (2014) Successful allogeneic stem cell transplantation with long-term remission of ETV6/FLT3-positive myeloid/lymphoid neoplasm with eosinophilia. Ann Hematol 93(3):535–537

    Article  Google Scholar 

  23. Troadec E et al (2017) A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia 31(2):514–517

    Article  CAS  Google Scholar 

  24. Chung A et al (2017) A novel TRIP11-FLT3 fusion in a patient with a myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet 216–217:10–15

    Article  Google Scholar 

  25. Munthe-Kaas, MC, et al. (2020) Partial Response to Sorafenib in a Child With a Myeloid/Lymphoid Neoplasm, Eosinophilia, and a ZMYM2-FLT3 Fusion. J Pediatr Hematol Oncol

  26. Falchi L et al (2014) ETV6-FLT3 fusion gene-positive, eosinophilia-associated myeloproliferative neoplasm successfully treated with sorafenib and allogeneic stem cell transplant. Leukemia 28(10):2090–2092

    Article  CAS  Google Scholar 

  27. Vu HA et al (2006) FLT3 is fused to ETV6 in a myeloproliferative disorder with hypereosinophilia and a t(12;13)(p13;q12) translocation. Leukemia 20(8):1414–1421

    Article  CAS  Google Scholar 

  28. Jawhar M et al (2017) Cytogenetically cryptic ZMYM2-FLT3 and DIAPH1-PDGFRB gene fusions in myeloid neoplasms with eosinophilia. Leukemia 31(10):2271–2273

    Article  CAS  Google Scholar 

  29. Zhang, H, et al. (2018) Two myeloid leukemia cases with rare FLT3 fusions. Cold Spring Harb Mol Case Stud. 4(6)

  30. Grand FH et al (2007) A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Exp Hematol 35(11):1723–1727

    Article  CAS  Google Scholar 

  31. Chao AK et al (2020) Fusion driven JMML: a novel CCDC88C-FLT3 fusion responsive to sorafenib identified by RNA sequencing. Leukemia 34(2):662–666

    Article  Google Scholar 

  32. Tzankov A et al (2008) Systemic mastocytosis with associated myeloproliferative disease and precursor B lymphoblastic leukaemia with t(13;13)(q12;q22) involving FLT3. J Clin Pathol 61(8):958–961

    Article  CAS  Google Scholar 

  33. Shao H et al (2020) Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement. Leuk Res 99:106460

    Article  CAS  Google Scholar 

  34. Tang G et al (2021) Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod Pathol 34(9):1673–1685

    Article  CAS  Google Scholar 

  35. Reiter A et al (2005) The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 65(7):2662–2667

    Article  CAS  Google Scholar 

  36. Bain BJ, Ahmad S (2014) Should myeloid and lymphoid neoplasms with PCM1-JAK2 and other rearrangements of JAK2 be recognized as specific entities? Br J Haematol 166(6):809–817

    Article  CAS  Google Scholar 

  37. Heiss S et al (2005) Myelodysplastic/myeloproliferative disease with erythropoietic hyperplasia (erythroid preleukemia) and the unique translocation (8;9)(p23;p24): first description of a case. Hum Pathol 36(10):1148–1151

    Article  CAS  Google Scholar 

  38. Tang G et al (2019) Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod Pathol 32(4):490–498

    Article  CAS  Google Scholar 

  39. Pozdnyakova O et al (2021) Myeloid/Lymphoid Neoplasms Associated With Eosinophilia and Rearrangements of PDGFRA, PDGFRB, or FGFR1 or With PCM1-JAK2. Am J Clin Pathol 155(2):160–178

    Article  CAS  Google Scholar 

  40. Luedke C, Rein L (2020) Transformation to erythroblastic sarcoma from myeloid neoplasm with PCM1-JAK2. Blood 136(9):1113

    Article  CAS  Google Scholar 

  41. Chen JA et al (2021) Lymphoid blast transformation in an MPN with BCR-JAK2 treated with ruxolitinib: putative mechanisms of resistance. Blood Adv 5(17):3492–3496

    Article  CAS  Google Scholar 

  42. Kaplan, HG, et al.(2022) PCM1-JAK2 Fusion Tyrosine Kinase Gene-Related Neoplasia: A Systematic Review of the Clinical Literature. Oncologist

  43. Lierman E et al (2012) Ruxolitinib inhibits transforming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCM1-JAK2-positive chronic eosinophilic leukemia. Blood 120(7):1529–1531

    Article  CAS  Google Scholar 

  44. Rumi E et al (2015) Efficacy of ruxolitinib in myeloid neoplasms with PCM1-JAK2 fusion gene. Ann Hematol 94(11):1927–1928

    Article  Google Scholar 

  45. Schwaab J et al (2015) Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann Hematol 94(2):233–238

    Article  CAS  Google Scholar 

  46. Poitras JL et al (2008) Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia. Genes Chromosomes Cancer 47(10):884–9

    Article  CAS  Google Scholar 

  47. Tran TH et al (2018) Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia. Blood Adv 2(5):529–533

    Article  CAS  Google Scholar 

  48. Baer C et al (2018) Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica 103(8):e348–e350

    Article  CAS  Google Scholar 

  49. Rapanotti MC et al (2010) Molecular characterization of paediatric idiopathic hypereosinophilia. Br J Haematol 151(5):440–446

    Article  Google Scholar 

  50. Gao L et al (2022) A rare cause of persistent leukocytosis with massive splenomegaly: Myeloid neoplasm with BCR-PDGFRA rearrangement-Case report and literature review. Medicine (Baltimore) 101(24):e29179

    Article  Google Scholar 

  51. Elling C et al (2011) Novel imatinib-sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood 117(10):2935–2943

    Article  CAS  Google Scholar 

  52. Qu SQ et al (2016) Long-term outcomes of imatinib in patients with FIP1L1/ PDGFRA associated chronic eosinophilic leukemia: experience of a single center in China. Oncotarget 7(22):33229–33236

    Article  Google Scholar 

  53. Lierman E et al (2009) FIP1L1-PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia 23(5):845–851

    Article  CAS  Google Scholar 

  54. Sadovnik I et al (2014) Identification of Ponatinib as a potent inhibitor of growth migration, and activation of neoplastic eosinophils carrying FIP1L1-PDGFRA. Exp Hematol 42(4):282-293 e4

    Article  CAS  Google Scholar 

  55. Fang H et al (2020) Systematic Use of Fluorescence in situ Hybridization (FISH) and Clinicopathological Features in the Screening of PDGFRB Rearrangements of Patients with Myeloid/Lymphoid Neoplasms. Histopathology

  56. Gupta SK et al (2020) A Cryptic BCR-PDGFRB Fusion Resulting in a Chronic Myeloid Neoplasm With Monocytosis and Eosinophilia: A Novel Finding With Treatment Implications. J Natl Compr Canc Netw 18(10):1300–1304

    Article  CAS  Google Scholar 

  57. Jan M et al (2020) A cryptic imatinib-sensitive G3BP1-PDGFRB rearrangement in a myeloid neoplasm with eosinophilia. Blood Adv 4(3):445–448

    Article  Google Scholar 

  58. Strati P et al (2018) Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk Lymphoma 59(7):1672–1676

    Article  CAS  Google Scholar 

  59. Umino K et al (2018) Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement. Hematology 23(8):470–477

    Article  CAS  Google Scholar 

  60. Vega F et al (2008) t(8;13)-positive bilineal lymphomas: report of 6 cases. Am J Surg Pathol 32(1):14–20

    Article  Google Scholar 

  61. Montenegro-Garreaud X et al (2017) Myeloproliferative neoplasms with t(8;22)(p11.2;q11.2)/BCR-FGFR1:a meta-analysis of 20 cases shows cytogenetic progression with B-lymphoid blast phase. Hum Pathol 65:147–156

    Article  CAS  Google Scholar 

  62. Chen M et al (2021) Myeloid/lymphoid neoplasm with CEP110-FGFR1 fusion: An analysis of 16 cases show common features and poor prognosis. Hematology 26(1):153–159

    Article  CAS  Google Scholar 

  63. Verstovsek S et al (2018) Treatment of the myeloid/lymphoid neoplasm with FGFR1 rearrangement with FGFR1 inhibitor. Ann Oncol 29(8):1880–1882

    Article  CAS  Google Scholar 

  64. Hernandez-Boluda JC et al (2022) Allogeneic hematopoietic cell transplantation in patients with myeloid/lymphoid neoplasm with FGFR1-rearrangement: a study of the Chronic Malignancies Working Party of EBMT. Bone Marrow Transplant 57(3):416–422

    Article  CAS  Google Scholar 

  65. Fang H et al (2020) Systematic use of fluorescence in-situ hybridisation and clinicopathological features in the screening of PDGFRB rearrangements of patients with myeloid/lymphoid neoplasms. Histopathology 76(7):1042–1054

    Article  Google Scholar 

  66. Strati, P, et al. (2017) Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk Lymphoma. 1–5

  67. Brown LE et al (2016) A 26-Year-Old Female with Systemic Mastocytosis with Associated Myeloid Neoplasm with Eosinophilia and Abnormalities of PDGFRB, t(4;5)(q21;q33). Case Rep Hematol 2016:4158567

    Google Scholar 

  68. Duckworth CB, Zhang L, Li S (2014) Systemic mastocytosis with associated myeloproliferative neoplasm with t(8;19)(p12;q13.1) and abnormality of FGFR1: report of a unique case. Int J Clin Exp Pathol 7(2):801–7

    Google Scholar 

  69. Pardanani A et al (2004) FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 104(10):3038–3045

    Article  CAS  Google Scholar 

  70. Roberts KG et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371(11):1005–1015

    Article  Google Scholar 

  71. Najfeld V et al (2007) Numerical gain and structural rearrangements of JAK2, identified by FISH, characterize both JAK2617V>F-positive and -negative patients with Ph-negative MPD, myelodysplasia, and B-lymphoid neoplasms. Exp Hematol 35(11):1668–1676

    Article  CAS  Google Scholar 

  72. Roberts KG et al (2018) Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children’s Oncology Group. Blood 132(8):815–824

    Article  CAS  Google Scholar 

  73. Wang W et al (2016) Cytogenetic Evolution Associated With Disease Progression in Hematopoietic Neoplasms With t(8;22)(p11;q11)/BCR-FGFR1 Rearrangement. J Natl Compr Canc Netw 14(6):708–711

    Article  CAS  Google Scholar 

  74. Valent P et al (2021) Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol 43(3):423–438

    Article  CAS  Google Scholar 

  75. Wang SA et al (2016) Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol 29(8):854–864

    Article  CAS  Google Scholar 

  76. Pardanani A et al (2016) Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia 30(9):1924–1926

    Article  CAS  Google Scholar 

  77. Lee JS et al (2017) Idiopathic hypereosinophilia is clonal disorder? Clonality identified by targeted sequencing. PLoS ONE 12(10):e0185602

    Article  Google Scholar 

  78. Cross NCP et al (2019) Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia. Leukemia 33(2):415–425

    Article  CAS  Google Scholar 

  79. Kelemen K et al (2021) Eosinophilia/Hypereosinophilia in the Setting of Reactive and Idiopathic Causes, Well-Defined Myeloid or Lymphoid Leukemias, or Germline Disorders. Am J Clin Pathol 155(2):179–210

    Article  CAS  Google Scholar 

  80. Wang SA et al (2017) Bone marrow morphology is a strong discriminator between chronic eosinophilic leukemia, not otherwise specified and reactive idiopathic hypereosinophilic syndrome. Haematologica 102(8):1352–1360

    Article  CAS  Google Scholar 

  81. Fang H et al (2018) A Test Utilization Approach to the Diagnostic Workup of Isolated Eosinophilia in Otherwise Morphologically Unremarkable Bone Marrow: A Single Institutional Experience. Am J Clin Pathol 150(5):421–431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AZ, RH, DA, AO, and SW participated in the discussion and formulation of the International Consensus Classification (ICC) on eosinophilic disorder. All authors participated in the writing, editing, and proofreading of the manuscript.

Corresponding author

Correspondence to Sa A. Wang.

Ethics declarations

The review follows the ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzankov, A., Reichard, K.K., Hasserjian, R.P. et al. Updates on eosinophilic disorders. Virchows Arch 482, 85–97 (2023). https://doi.org/10.1007/s00428-022-03402-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03402-8

Keywords

Navigation