Skip to main content

Advertisement

Log in

Investigation of the RB1-SOX2 axis constitutes a tool for viral status determination and diagnosis in Merkel cell carcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

MCC (Merkel cell carcinoma) is an aggressive neuroendocrine cutaneous neoplasm. Integration of the Merkel cell polyomavirus (MCPyV) is observed in about 80% of the cases, while the remaining 20% are related to UV exposure. Both MCPyV-positive and -negative MCCs—albeit by different mechanisms—are associated with RB1 inactivation leading to overexpression of SOX2, a major contributor to MCC biology. Moreover, although controversial, loss of RB1 expression seems to be restricted to MCPyV-negative cases.

The aim of the present study was to assess the performances of RB1 loss and SOX2 expression detected by immunohistochemistry to determine MCPyV status and to diagnose MCC, respectively.

Overall, 196 MCC tumors, 233 non-neuroendocrine skin neoplasms and 70 extra-cutaneous neuroendocrine carcinomas (NEC) were included. SOX2 and RB1 expressions were assessed by immunohistochemistry in a tissue micro-array. Diagnostic performances were determined using the likelihood ratio (LHR).

RB1 expression loss was evidenced in 27% of the MCC cases, 12% of non-neuroendocrine skin tumors and 63% of extra-cutaneous NEC. Importantly, among MCC cases, RB1 loss was detected in all MCPyV(-) MCCs, while MCPyV( +) cases were consistently RB1-positive (p < 0.001). SOX2 diffuse expression was observed in 92% of the MCC cases and almost never observed in non-neuroendocrine skin epithelial neoplasms (2%, p < 0.0001, LHR +  = 59). Furthermore, SOX2 diffuse staining was more frequently observed in MCCs than in extra-cutaneous NECs (30%, p < 0.001, LHR +  = 3.1).

These results confirm RB1 as a robust predictor of MCC viral status and further suggest SOX2 to be a relevant diagnostic marker of MCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Becker JC, Stang A, DeCaprio JA et al (2017) Merkel cell carcinoma. Nat Rev Dis Primer 3:17077. https://doi.org/10.1038/nrdp.2017.77

    Article  Google Scholar 

  2. Harms PW, Harms KL, Moore PS et al (2018) The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol 15:763–776. https://doi.org/10.1038/s41571-018-0103-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stanoszek LM, Wang GY, Harms PW (2017) Histologic Mimics of Basal Cell Carcinoma. Arch Pathol Lab Med 141:1490–1502. https://doi.org/10.5858/arpa.2017-0222-RA

    Article  CAS  PubMed  Google Scholar 

  4. Walsh NM, Cerroni L (2021) Merkel cell carcinoma: A review. J Cutan Pathol 48:411–421. https://doi.org/10.1111/cup.13910

    Article  PubMed  Google Scholar 

  5. Kervarrec T, Tallet A, Miquelestorena-Standley E, et al (2019) Diagnostic accuracy of a panel of immunohistochemical and molecular markers to distinguish Merkel cell carcinoma from other neuroendocrine carcinomas. Mod Pathol Off J U S Can Acad Pathol Inc 32:499–510. https://doi.org/10.1038/s41379-018-0155-y.

  6. Kervarrec T, Zaragoza J, Gaboriaud P et al (2018) Differentiating Merkel cell carcinoma of lymph nodes without a detectable primary skin tumor from other metastatic neuroendocrine carcinomas: The ELECTHIP criteria. J Am Acad Dermatol 78:964-972.e3. https://doi.org/10.1016/j.jaad.2017.11.037

    Article  PubMed  Google Scholar 

  7. Harms PW (2017) Update on Merkel Cell Carcinoma. Clin Lab Med 37:485–501. https://doi.org/10.1016/j.cll.2017.05.004

    Article  PubMed  Google Scholar 

  8. Feng H, Shuda M, Chang Y et al (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100. https://doi.org/10.1126/science.1152586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harms PW, Vats P, Verhaegen ME et al (2015) The Distinctive Mutational Spectra of Polyomavirus-Negative Merkel Cell Carcinoma. Cancer Res 75:3720–3727. https://doi.org/10.1158/0008-5472.CAN-15-0702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carter MD, Gaston D, Huang W-Y et al (2017) Genetic Profiles of Different Subsets of Merkel Cell Carcinoma Show Links between Combined and Pure MCPyV-negative Tumors. Hum Pathol. https://doi.org/10.1016/j.humpath.2017.10.014

    Article  PubMed  Google Scholar 

  11. Starrett GJ, Thakuria M, Chen T et al (2020) Clinical and molecular characterization of virus-positive and virus-negative Merkel cell carcinoma. Genome Med 12:30. https://doi.org/10.1186/s13073-020-00727-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong SQ, Waldeck K, Vergara IA et al (2015) UV-Associated Mutations Underlie the Etiology of MCV-Negative Merkel Cell Carcinomas. Cancer Res 75:5228–5234. https://doi.org/10.1158/0008-5472.CAN-15-1877

    Article  CAS  PubMed  Google Scholar 

  13. Houben R, Schrama D, Alb M et al (2010) Comparable expression and phosphorylation of the retinoblastoma protein in Merkel cell polyoma virus-positive and negative Merkel cell carcinoma. Int J Cancer 126:796–798. https://doi.org/10.1002/ijc.24790

    Article  CAS  PubMed  Google Scholar 

  14. Sahi H, Savola S, Sihto H et al (2014) RB1 gene in Merkel cell carcinoma: hypermethylation in all tumors and concurrent heterozygous deletions in the polyomavirus-negative subgroup. APMIS Acta Pathol Microbiol Immunol Scand 122:1157–1166. https://doi.org/10.1111/apm.12274

    Article  CAS  Google Scholar 

  15. Harms PW, Patel RM, Verhaegen ME et al (2013) Distinct gene expression profiles of viral- and nonviral-associated merkel cell carcinoma revealed by transcriptome analysis. J Invest Dermatol 133:936–945. https://doi.org/10.1038/jid.2012.445

    Article  CAS  PubMed  Google Scholar 

  16. Sihto H, Kukko H, Koljonen V, et al (2011) Merkel cell polyomavirus infection, large T antigen, retinoblastoma protein and outcome in Merkel cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res 17:4806–4813. https://doi.org/10.1158/1078-0432.CCR-10-3363.

  17. Goh G, Walradt T, Markarov V, et al (2016) Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget 7:3403–3415. https://doi.org/10.18632/oncotarget.6494.

  18. Cimino PJ, Robirds DH, Tripp SR, et al (2014) Retinoblastoma gene mutations detected by whole exome sequencing of Merkel cell carcinoma. Mod Pathol Off J U S Can Acad Pathol Inc 27:1073–1087. https://doi.org/10.1038/modpathol.2013.235.

  19. Zahn J, Chan MP, Wang G et al (2019) Altered Rb, p16, and p53 expression is specific for porocarcinoma relative to poroma. J Cutan Pathol 46:659–664. https://doi.org/10.1111/cup.13480

    Article  PubMed  Google Scholar 

  20. Murao K, Kubo Y, Ohtani N et al (2006) Epigenetic abnormalities in cutaneous squamous cell carcinomas: frequent inactivation of the RB1/p16 and p53 pathways. Br J Dermatol 155:999–1005. https://doi.org/10.1111/j.1365-2133.2006.07487.x

    Article  CAS  PubMed  Google Scholar 

  21. Houben R, Adam C, Baeurle A et al (2012) An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int J Cancer 130:847–856. https://doi.org/10.1002/ijc.26076

    Article  CAS  PubMed  Google Scholar 

  22. Harold A, Amako Y, Hachisuka J et al (2019) Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1907154116

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mu P, Zhang Z, Benelli M et al (2017) SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355:84–88. https://doi.org/10.1126/science.aah4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ku SY, Rosario S, Wang Y et al (2017) Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83. https://doi.org/10.1126/science.aah4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan K, Gravemeyer J, Ritter C et al (2019) MCPyV Large T antigen induced atonal homolog 1 (ATOH1) is a lineage-dependency oncogene in Merkel cell carcinoma. J Invest Dermatol. https://doi.org/10.1016/j.jid.2019.06.135

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tilling T, Moll I (2012) Which are the cells of origin in merkel cell carcinoma? J Skin Cancer 2012:680410. https://doi.org/10.1155/2012/680410

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kervarrec T, Samimi M, Guyétant S, et al (2019) Histogenesis of Merkel cell carcinoma: a comprehensive review. Frontiers in Oncology

  28. Ostrowski SM, Wright MC, Bolock AM et al (2015) Ectopic Atoh1 expression drives Merkel cell production in embryonic, postnatal and adult mouse epidermis. Dev Camb Engl 142:2533–2544. https://doi.org/10.1242/dev.123141

    Article  CAS  Google Scholar 

  29. Perdigoto CN, Bardot ES, Valdes VJ et al (2014) Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network. Dev Camb Engl 141:4690–4696. https://doi.org/10.1242/dev.112169

    Article  CAS  Google Scholar 

  30. Kervarrec Thibault, Appenzeller Silke, Samimi Mahatb, et al (2022) Merkel cell polyomavirus-negative -Merkel cell carcinoma originating from in situ squamous cell carcinoma: a keratinocytic tumor with neuroendocrine differentiation. J Invest Dermatol 142(3):516–527

  31. Laga AC, Lai C-Y, Zhan Q et al (2010) Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. Am J Pathol 176:903–913. https://doi.org/10.2353/ajpath.2010.090495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Siegle JM, Basin A, Sastre-Perona A et al (2014) SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun 5:4511. https://doi.org/10.1038/ncomms5511

    Article  CAS  PubMed  Google Scholar 

  33. Villada G, Kryvenko ON, Campuzano-Zuluaga G et al (2018) A Limited Immunohistochemical Panel to Distinguish Basal Cell Carcinoma of Cutaneous Origin From Basaloid Squamous Cell Carcinoma of the Head and Neck. Appl Immunohistochem Mol Morphol AIMM 26:126–131. https://doi.org/10.1097/PAI.0000000000000394

    Article  CAS  PubMed  Google Scholar 

  34. Kervarrec T, Samimi M, Hesbacher S, et al (2020) Merkel Cell Polyomavirus T Antigens Induce Merkel Cell-Like Differentiation in GLI1-Expressing Epithelial Cells. Cancers (Basel) 12(7):1989. https://doi.org/10.3390/cancers12071989

  35. Bobos M, Hytiroglou P, Kostopoulos I et al (2006) Immunohistochemical distinction between merkel cell carcinoma and small cell carcinoma of the lung. Am J Dermatopathol 28:99–104. https://doi.org/10.1097/01.dad.0000183701.67366.c7

    Article  PubMed  Google Scholar 

  36. Stanoszek LM, Chan MP, Palanisamy N et al (2019) Neurofilament is superior to cytokeratin 20 in supporting cutaneous origin for neuroendocrine carcinoma. Histopathology 74:504–513. https://doi.org/10.1111/his.13758

    Article  PubMed  Google Scholar 

  37. Schmidt U, Müller U, Metz KA et al (1998) Cytokeratin and neurofilament protein staining in Merkel cell carcinoma of the small cell type and small cell carcinoma of the lung. Am J Dermatopathol 20:346–351

    Article  CAS  Google Scholar 

  38. Azmahani A, Nakamura Y, Ishida H et al (2016) Estrogen receptor β in Merkel cell carcinoma: its possible roles in pathogenesis. Hum Pathol 56:128–133. https://doi.org/10.1016/j.humpath.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  39. Leblebici C, Yeni B, Savli TC et al (2019) A new immunohistochemical marker, insulinoma-associated protein 1 (INSM1), for Merkel cell carcinoma: Evaluation of 24 cases. Ann Diagn Pathol 40:53–58. https://doi.org/10.1016/j.anndiagpath.2019.04.002

    Article  PubMed  Google Scholar 

  40. Daoud MA, Mete O, Al Habeeb A et al (2013) Neuroendocrine carcinoma of the skin–an updated review. Semin Diagn Pathol 30:234–244. https://doi.org/10.1053/j.semdp.2013.07.002

    Article  PubMed  Google Scholar 

  41. Agaimy A, Erlenbach-Wünsch K, Konukiewitz B, et al (2013) ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol Off J U S Can Acad Pathol Inc 26:995–1003. https://doi.org/10.1038/modpathol.2013.40.

  42. Lilo MT, Chen Y, LeBlanc RE (2018) INSM1 Is More Sensitive and Interpretable than Conventional Immunohistochemical Stains Used to Diagnose Merkel Cell Carcinoma. Am J Surg Pathol 42:1541–1548. https://doi.org/10.1097/PAS.0000000000001136

    Article  PubMed  Google Scholar 

  43. Rush PS, Rosenbaum JN, Roy M et al (2018) Insulinoma-associated 1: A novel nuclear marker in Merkel cell carcinoma (cutaneous neuroendocrine carcinoma). J Cutan Pathol 45:129–135. https://doi.org/10.1111/cup.13079

    Article  PubMed  Google Scholar 

  44. Rosenbaum JN, Guo Z, Baus RM et al (2015) INSM1: A Novel Immunohistochemical and Molecular Marker for Neuroendocrine and Neuroepithelial Neoplasms. Am J Clin Pathol 144:579–591. https://doi.org/10.1309/AJCPGZWXXBSNL4VD

    Article  CAS  PubMed  Google Scholar 

  45. Moshiri AS, Doumani R, Yelistratova L et al (2017) Polyomavirus-Negative Merkel Cell Carcinoma: A More Aggressive Subtype Based on Analysis of 282 Cases Using Multimodal Tumor Virus Detection. J Invest Dermatol 137:819–827. https://doi.org/10.1016/j.jid.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  46. Kervarrec T, Tallet A, Miquelestorena-Standley E, et al (2019) Morphologic and immunophenotypical features distinguishing Merkel cell polyomavirus-positive and -negative Merkel cell carcinoma. Mod Pathol. 32(11):1605–1616. https://doi.org/10.1038/s41379-019-0288-7

  47. Pasternak S, Carter MD, Ly TY et al (2018) Immunohistochemical profiles of different subsets of Merkel cell carcinoma. Hum Pathol 82:232–238. https://doi.org/10.1016/j.humpath.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  48. Becker JC, Eigentler T, Frerich B, et al (2019) S2k guidelines for Merkel cell carcinoma (MCC, neuroendocrine carcinoma of the skin) - update 2018. J. Dtsch. Dermatol. Ges J Ger Soc Dermatol JDDG 17:562–576. https://doi.org/10.1111/ddg.13841

  49. Samimi M, Molet L, Fleury M et al (2016) Prognostic value of antibodies to Merkel cell polyomavirus T antigens and VP1 protein in patients with Merkel cell carcinoma. Br J Dermatol 174:813–822. https://doi.org/10.1111/bjd.14313

    Article  CAS  PubMed  Google Scholar 

  50. Harms KL, Zhao L, Johnson B, et al (2021) Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers. Clin Cancer Res Off J Am Assoc Cancer Res 27:2494–2504. https://doi.org/10.1158/1078-0432.CCR-20-0864

  51. Houben R, Angermeyer S, Haferkamp S et al (2015) Characterization of functional domains in the Merkel cell polyoma virus Large T antigen. Int J Cancer 136:E290–300. https://doi.org/10.1002/ijc.29200

    Article  CAS  PubMed  Google Scholar 

  52. Schrama D, Peitsch WK, Zapatka M et al (2011) Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J Invest Dermatol 131:1631–1638. https://doi.org/10.1038/jid.2011.115

    Article  CAS  PubMed  Google Scholar 

  53. Paulson KG, Carter JJ, Johnson LG et al (2010) Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. Cancer Res 70:8388–8397. https://doi.org/10.1158/0008-5472.CAN-10-2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eid M, Nguyen J, Brownell I (2017) Seeking Standards for the Detection of Merkel Cell Polyomavirus and its Clinical Significance. J Invest Dermatol 137:797–799. https://doi.org/10.1016/j.jid.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  55. Rodig SJ, Cheng J, Wardzala J et al (2012) Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest 122:4645–4653. https://doi.org/10.1172/JCI64116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hesbacher S, Pfitzer L, Wiedorfer K, et al (2016) RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget 7:32956–32968. https://doi.org/10.18632/oncotarget.8793

  57. Lesko MH, Driskell RR, Kretzschmar K et al (2013) Sox2 modulates the function of two distinct cell lineages in mouse skin. Dev Biol 382:15–26. https://doi.org/10.1016/j.ydbio.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  59. Bardot ES, Valdes VJ, Zhang J et al (2013) Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells. EMBO J 32:1990–2000. https://doi.org/10.1038/emboj.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. ZurHausen A, Rennspiess D, Winnepenninckx V et al (2013) Early B-cell differentiation in Merkel cell carcinomas: clues to cellular ancestry. Cancer Res 73:4982–4987. https://doi.org/10.1158/0008-5472.CAN-13-0616

    Article  CAS  Google Scholar 

  61. Sunshine JC, Jahchan NS, Sage J et al (2018) Are there multiple cells of origin of Merkel cell carcinoma? Oncogene 37:1409–1416. https://doi.org/10.1038/s41388-017-0073-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becker JC, Zur HA (2014) Cells of origin in skin cancer. J Invest Dermatol 134:2491–2493. https://doi.org/10.1038/jid.2014.233

    Article  CAS  PubMed  Google Scholar 

  63. Kervarrec T, Chéret J, Paus R et al (2021) Transduction-induced overexpression of Merkel cell T antigens in human hair follicles induces formation of pathological cell clusters with Merkel cell carcinoma-like phenotype. Exp Dermatol. https://doi.org/10.1111/exd.14447

    Article  PubMed  Google Scholar 

  64. Verhaegen ME, Mangelberger D, Harms PW et al (2017) Merkel cell polyomavirus small T antigen initiates Merkel cell carcinoma-like tumor development in mice. Cancer Res 77:3151–3157. https://doi.org/10.1158/0008-5472.CAN-17-0035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Houcine Y, Chelly I, Zehani A et al (2017) Neuroendocrine differentiation in basal cell carcinoma. J Immunoassay Immunochem 38:487–493. https://doi.org/10.1080/15321819.2017.1331170

    Article  CAS  PubMed  Google Scholar 

  66. Panse G, McNiff JM, Ko CJ (2017) Basal cell carcinoma: CD56 and cytokeratin 5/6 staining patterns in the differential diagnosis with Merkel cell carcinoma. J Cutan Pathol 44:553–556. https://doi.org/10.1111/cup.12950

    Article  PubMed  Google Scholar 

  67. Goto K, Anan T, Nakatsuka T et al (2017) Low-Grade Neuroendocrine Carcinoma of the Skin (Primary Cutaneous Carcinoid Tumor) as a Distinctive Entity of Cutaneous Neuroendocrine Tumors: A Clinicopathologic Study of 3 Cases With Literature Review. Am J Dermatopathol 39:250–258. https://doi.org/10.1097/DAD.0000000000000657

    Article  PubMed  Google Scholar 

  68. Agni M, Raven ML, Bowen RC et al (2020) An Update on Endocrine Mucin-producing Sweat Gland Carcinoma: Clinicopathologic Study of 63 Cases and Comparative Analysis. Am J Surg Pathol 44:1005–1016. https://doi.org/10.1097/PAS.0000000000001462

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ronen S, Aguilera-Barrantes I, Giorgadze T et al (2018) Polymorphous Sweat Gland Carcinoma: An Immunohistochemical and Molecular Study. Am J Dermatopathol 40:580–587. https://doi.org/10.1097/DAD.0000000000001128

    Article  PubMed  Google Scholar 

  70. Fukuhara M, Agnarsdóttir M, Edqvist P-H et al (2016) SATB2 is expressed in Merkel cell carcinoma. Arch Dermatol Res 308:449–454. https://doi.org/10.1007/s00403-016-1655-6

    Article  CAS  PubMed  Google Scholar 

  71. Park K-S, Liang M-C, Raiser DM et al (2011) Characterization of the cell of origin for small cell lung cancer. Cell Cycle Georget Tex 10:2806–2815. https://doi.org/10.4161/cc.10.16.17012

    Article  CAS  Google Scholar 

  72. Park JW, Lee JK, Sheu KM et al (2018) Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362:91–95. https://doi.org/10.1126/science.aat5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. George J, Lim JS, Jang SJ et al (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53. https://doi.org/10.1038/nature14664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Borromeo MD, Savage TK, Kollipara RK et al (2016) ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep 16:1259–1272. https://doi.org/10.1016/j.celrep.2016.06.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tetzlaff MT, Harms PW (2020) Danger is only skin deep: aggressive epidermal carcinomas. An overview of the diagnosis, demographics, molecular-genetics, staging, prognostic biomarkers, and therapeutic advances in Merkel cell carcinoma. Mod Pathol Off J U S Can Acad Pathol Inc 33:42–55. https://doi.org/10.1038/s41379-019-0394-6

  76. Laga AC, Zhan Q, Weishaupt C et al (2011) SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study. Exp Dermatol 20:339–345. https://doi.org/10.1111/j.1600-0625.2011.01247.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sannino G, Marchetto A, Ranft A et al (2019) Gene expression and immunohistochemical analyses identify SOX2 as major risk factor for overall survival and relapse in Ewing sarcoma patients. EBioMedicine 47:156–162. https://doi.org/10.1016/j.ebiom.2019.08.002

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

La ligue contre le cancer, HUGO Grant (Hôpitaux Universitaires du Grand Ouest).

Author information

Authors and Affiliations

Authors

Contributions

ST, ATa, SG, SM, TK made substantial contributions to the conception, design of the work; contributed to the acquisition, analysis, interpretation of data; and drafted the work.

EM, CaC, YL, EH, AB, PS, NB, GB, JZ, CN, FA, MD, MM, RH, DS, ChC, GF MLJ, NM, PG, PB and ATo made substantial contributions to the acquisition, analysis and revised the work critically for important intellectual content.

All authors approved the version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Thibault Kervarrec.

Ethics declarations

Ethical approval

The local Ethics Committee in Human Research of Tours (France) approved the study (no. ID RCB2009-A01056-51)

Conflict of Interest:

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Serge Guyétant, Mahtab Samimi and Thibault Kervarrec contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17824 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanguturi, S., Tallet, A., Miquelestorena-Standley, E. et al. Investigation of the RB1-SOX2 axis constitutes a tool for viral status determination and diagnosis in Merkel cell carcinoma. Virchows Arch 480, 1239–1254 (2022). https://doi.org/10.1007/s00428-022-03315-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03315-6

Keywords

Navigation