Skip to main content

Advertisement

Log in

Updates on breast biomarkers

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Recent advancements in breast cancer treatment have ushered in a new era of precision medicine. Novel trials have led to the approval of a growing list of personalized therapies and corresponding biomarkers. These advancements have shifted the pathologist’s practice into a leading role in the management breast cancer. Understanding the complex algorithms and diagnostic modalities used to assess predictive and prognostic biomarkers is central for quality oncology care. ER and HER2 subcategorize breast cancers into treatment groups under which different biomarkers and therapies are indicated, while they also serve as predictive biomarkers for specific targeted treatments. This review will cover the evolution and latest updates of the CAP/ASCO guidelines relevant to these two important biomarkers in breast cancer. Still evolving concepts such as HER2 heterogeneity, HER2 “low,” and HER2-mutated cancers have the potential to continue to change HER2 testing in breast cancers. In addition to ER and HER2, biomarkers used in specific clinical scenarios will be covered. In early-stage ER-positive/HER2-negative disease, multi-gene expression panels (such as OncotypeDX) have emerged as the new standard biomarker when determining if chemotherapy should be added to endocrine therapy. In the more aggressive ER-negative/HER2-positive or triple negative early-stage breast cancers, response to neoadjuvant therapy has proved to be a useful biomarker to help determine if additional therapy should be added for patients with an incomplete response. Ki67 has also recently emerged as a marker that can be used to identify the highest risk ER-positive and HER2-negative cancers if considering adding a cell cycle inhibitor (abemaciclib) to endocrine therapy. Importantly, in the metastatic setting, numerous predictive biomarkers have emerged, including recommendations for germline BRCA mutation testing for all metastatic patients (to determine if PARP inhibitor therapy is an option) and other ER-/HER2-dependent biomarkers such as PD-L1 (for potential immunotherapy in triple negative patients) and PIK3CA mutation status (for potential PI3K inhibitor therapy in ER-positive metastatic patients). Other less common biomarkers of targeted therapy options (e.g., MSI/MMR, TMB, NTRK) as well as comprehensive genomic profiling to identify uncommon targets are also available in the metastatic setting to determine additional treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Group, F.D.A.N.I.H.B.W., BEST (Biomarkers, EndpointS, and other Tools) Resource. 2016.

  2. Pritzker KP (2015) Predictive and prognostic cancer biomarkers revisited. Expert Rev Mol Diagn 15(8):971–4

    Article  CAS  PubMed  Google Scholar 

  3. Clark GM et al (2006) Clinical utility of epidermal growth factor receptor expression for selecting patients with advanced non-small cell lung cancer for treatment with erlotinib. J Thorac Oncol 1(8):837–46

    Article  PubMed  Google Scholar 

  4. Wolff AC et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013

    Article  PubMed  Google Scholar 

  5. Wolff AC et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131(1):18–43

    Article  CAS  PubMed  Google Scholar 

  6. Wolff AC et al (2018) HER2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update Summary. J Oncol Pract 14(7):437–441

    Article  PubMed  Google Scholar 

  7. Allison KH et al (2020) Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J Clin Oncol 38(12):1346–1366

    Article  PubMed  Google Scholar 

  8. Allison KH et al (2020) Estrogen and progesterone receptor testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Guideline Update. Arch Pathol Lab Med 144(5):545–563

    Article  CAS  PubMed  Google Scholar 

  9. Hammond ME et al (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–95

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hammond ME et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134(7):e48-72

    Article  CAS  PubMed  Google Scholar 

  11. Davies C et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–84

    Article  CAS  PubMed  Google Scholar 

  12. Balduzzi A et al (2014) Survival outcomes in breast cancer patients with low estrogen/progesterone receptor expression. Clin Breast Cancer 14(4):258–64

    Article  PubMed  Google Scholar 

  13. Chen T et al (2018) Borderline ER-positive primary breast cancer gains no significant survival benefit from endocrine therapy: a systematic review and meta-analysis. Clin Breast Cancer 18(1):1–8

    Article  PubMed  Google Scholar 

  14. Deyarmin B et al (2013) Effect of ASCO/CAP guidelines for determining ER status on molecular subtype. Ann Surg Oncol 20(1):87–93

    Article  PubMed  Google Scholar 

  15. Gloyeske NC, Dabbs DJ, Bhargava R (2014) Low ER+ breast cancer: is this a distinct group? Am J Clin Pathol 141(5):697–701

    Article  PubMed  Google Scholar 

  16. Honma N et al (2014) Proportion of estrogen or progesterone receptor expressing cells in breast cancers and response to endocrine therapy. Breast 23(6):754–62

    Article  PubMed  Google Scholar 

  17. Iwamoto T et al (2012) Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol 30(7):729–34

    Article  PubMed  Google Scholar 

  18. Raghav KP et al (2012) Impact of low estrogen/progesterone receptor expression on survival outcomes in breast cancers previously classified as triple negative breast cancers. Cancer 118(6):1498–506

    Article  CAS  PubMed  Google Scholar 

  19. Yi M et al (2014) Which threshold for ER positivity? a retrospective study based on 9639 patients. Ann Oncol 25(5):1004–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allred DC et al (2012) Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J Clin Oncol 30(12):1268–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cuzick J et al (2011) Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol 12(1):21–9

    Article  CAS  PubMed  Google Scholar 

  22. DeCensi A et al (2019) Randomized placebo controlled trial of low-dose tamoxifen to prevent local and contralateral recurrence in breast intraepithelial neoplasia. J Clin Oncol 37(19):1629–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Houghton J et al (2003) Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362(9378):95–102

    Article  PubMed  Google Scholar 

  24. Hwang KT et al (2018) Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database. Breast Cancer Res Treat 169(2):311–322

    Article  CAS  PubMed  Google Scholar 

  25. Press MF et al (1997) HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol 15(8):2894–904

    Article  CAS  PubMed  Google Scholar 

  26. Press MF et al (1993) Her-2/neu expression in node-negative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res 53(20):4960–70

    CAS  PubMed  Google Scholar 

  27. Yamauchi H, Stearns V, Hayes DF (2001) When is a tumor marker ready for prime time? a case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol 19(8):2334–56

    Article  CAS  PubMed  Google Scholar 

  28. Wolff AC et al (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36(20):2105–2122

    Article  CAS  PubMed  Google Scholar 

  29. Ellis IO et al (2004) Best Practice No 176: Updated recommendations for HER2 testing in the UK. J Clin Pathol 57(3):233–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellis IO et al (2000) Recommendations for HER2 testing in the UK. Journal of clinical pathology 53(12):890–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rakha EA et al (2015) Updated UK Recommendations for HER2 assessment in breast cancer. J Clin Pathol 68(2):93–9

    Article  PubMed  Google Scholar 

  32. Walker RA et al (2008) HER2 testing in the UK: further update to recommendations. J Clin Pathol 61(7):818–24

    Article  CAS  PubMed  Google Scholar 

  33. Grimm, E.V., et al., HER2 testing: insights from pathologists' perspective on technically challenging HER2 FISH cases. Appl Immunohistochem Mol Morphol, 2021.

  34. Hou Y, Nitta H, Li Z (2017) HER2 gene protein assay is useful to determine HER2 status and evaluate HER2 heterogeneity in HER2 equivocal breast cancer. American Journal of Clinical Pathology 147(1):89–95

    CAS  PubMed  Google Scholar 

  35. Allison KH, Dintzis SM, Schmidt RA (2011) Frequency of HER2 heterogeneity by fluorescence in situ hybridization according to CAP expert panel recommendations: time for a new look at how to report heterogeneity. Am J Clin Pathol 136(6):864–71

    Article  PubMed  Google Scholar 

  36. Bethune GC, Mullen JB, Chang MC (2013) HER2 testing of multifocal invasive breast carcinoma: how many blocks are enough? American Journal of Clinical Pathology 140(4):588–592

    Article  PubMed  Google Scholar 

  37. Grinda T et al (2021) Phenotypic discordance between primary and metastatic breast cancer in the large-scale real-life multicenter French ESME cohort. npj Breast Cancer 7(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanna WM et al (2014) HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Mod Pathol 27(1):4–18

    Article  CAS  PubMed  Google Scholar 

  39. Marchiò C et al (2009) Does chromosome 17 centromere copy number predict polysomy in breast cancer? A fluorescence in situ hybridization and microarray-based CGH analysis. J Pathol 219(1):16–24

    Article  PubMed  CAS  Google Scholar 

  40. Moelans CB, de Weger RA, van Diest PJ (2010) Absence of chromosome 17 polysomy in breast cancer: analysis by CEP17 chromogenic in situ hybridization and multiplex ligation-dependent probe amplification. Breast Cancer Res Treat 120(1):1–7

    Article  CAS  PubMed  Google Scholar 

  41. Troxell ML et al (2006) Evaluation of Her-2/neu status in carcinomas with amplified chromosome 17 centromere locus. Am J Clin Pathol 126(5):709–16

    Article  CAS  PubMed  Google Scholar 

  42. Tse CH et al (2011) Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy. J Clin Oncol 29(31):4168–74

    Article  CAS  PubMed  Google Scholar 

  43. Yeh IT et al (2009) Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Mod Pathol 22(9):1169–75

    Article  CAS  PubMed  Google Scholar 

  44. Allison KH (2021) Prognostic and predictive parameters in breast pathology: a pathologist’s primer. Mod Pathol 34(Suppl 1):94–106

    Article  PubMed  Google Scholar 

  45. Ballard M et al (2017) “Non-classical” HER2 FISH results in breast cancer: a multi-institutional study. Mod Pathol 30(2):227–235

    Article  CAS  PubMed  Google Scholar 

  46. Press MF et al (2016) Assessing the New American Society of Clinical Oncology/College of American Pathologists Guidelines for HER2 Testing by fluorescence in situ hybridization: experience of an academic consultation practice. Arch Pathol Lab Med 140(11):1250–1258

    Article  PubMed  Google Scholar 

  47. Stoss OC et al (2015) Impact of updated HER2 testing guidelines in breast cancer–re-evaluation of HERA trial fluorescence in situ hybridization data. Mod Pathol 28(12):1528–34

    Article  CAS  PubMed  Google Scholar 

  48. Gordian-Arroyo AM, Zynger DL, Tozbikian GH (2019) Impact of the 2018 ASCO/CAP HER2 guideline focused update. Am J Clin Pathol 152(1):17–26

    Article  CAS  PubMed  Google Scholar 

  49. Kim MC et al (2020) Impact of the updated guidelines on human epidermal growth factor receptor 2 (HER2) testing in breast cancer. J Breast Cancer 23(5):484–497

    Article  PubMed  PubMed Central  Google Scholar 

  50. Press MF et al (2016) HER2 gene amplification testing by fluorescent in situ hybridization (FISH): comparison of the ASCO-College of American Pathologists Guidelines with FISH scores used for enrollment in Breast Cancer International Research Group Clinical Trials. J Clin Oncol 34(29):3518–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rakha EA et al (2021) Retrospective observational study of HER2 immunohistochemistry in borderline breast cancer patients undergoing neoadjuvant therapy, with an emphasis on Group 2 (HER2/CEP17 ratio ≥2.0, HER2 copy number <4.0 signals/cell) cases. Br J Cancer 124(11):1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farshid G et al (2019) ASCO/CAP 2018 breast cancer HER2 testing guidelines: summary of pertinent recommendations for practice in Australia. Pathology 51(4):345–348

    Article  PubMed  Google Scholar 

  53. Bose R et al (2013) Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 3(2):224–37

    Article  CAS  PubMed  Google Scholar 

  54. Rosa-Rosa, J.M., et al., High frequency of ERBB2 activating mutations in invasive lobular breast carcinoma with pleomorphic features. Cancers (Basel), 2019. 11(1).

  55. Ross JS et al (2016) Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic breast cancer: an emerging opportunity for anti-HER2 targeted therapies. Cancer 122(17):2654–62

    Article  CAS  PubMed  Google Scholar 

  56. Piccart M et al (2021) 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol 22(4):476–488

    Article  CAS  PubMed  Google Scholar 

  57. Sestak I et al (2020) Prognostic value of EndoPredict in women with hormone receptor-positive, HER2-negative invasive lobular breast cancer. Clin Cancer Res 26(17):4682–4687

    Article  CAS  PubMed  Google Scholar 

  58. Noordhoek I et al (2021) Breast cancer index predicts extended endocrine benefit to individualize selection of patients with HR(+) early-stage breast cancer for 10 years of endocrine therapy. Clin Cancer Res 27(1):311–319

    Article  CAS  PubMed  Google Scholar 

  59. Harbeck, N., et al., Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE Study. Ann Oncol, 2021.

  60. Cortazar P et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–72

    Article  PubMed  Google Scholar 

  61. von Minckwitz G et al (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 380(7):617–628

    Article  Google Scholar 

  62. Masuda N et al (2017) Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376(22):2147–2159

    Article  CAS  PubMed  Google Scholar 

  63. Symmans WF et al (2017) Long-term prognostic risk after neoadjuvant chemotherapy associated with residual cancer burden and breast cancer subtype. J Clin Oncol 35(10):1049–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robson M et al (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533

    Article  CAS  PubMed  Google Scholar 

  65. Litton JK et al (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 379(8):753–763

    Article  CAS  PubMed  Google Scholar 

  66. Tutt, A.N.J., et al., Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med, 2021.

  67. Andre F et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    Article  CAS  PubMed  Google Scholar 

  68. Schmid P et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121

    Article  CAS  PubMed  Google Scholar 

  69. Cortes J et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396(10265):1817–1828

    Article  PubMed  Google Scholar 

  70. Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drilon A et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kimberly H. Allison: conceptualization, supervision, review, and editing

Saleh Najjar: conceptualization and original draft preparation

This manuscript does not contain any studies with human participants or animals performed by any of the authors

Corresponding author

Correspondence to Kimberly H. Allison.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najjar, S., Allison, K.H. Updates on breast biomarkers. Virchows Arch 480, 163–176 (2022). https://doi.org/10.1007/s00428-022-03267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03267-x

Keywords

Navigation