Skip to main content

Advertisement

Log in

Comprehensive genomic profiling and prognostic analysis of cervical gastric-type mucinous adenocarcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Gastric-type mucinous adenocarcinoma (GAS) is an uncommon cervical adenocarcinoma, which is not associated with human papillomavirus (HPV) infection. Compared with HPV-associated cervical adenocarcinoma, GAS has characteristics of larger volume, deep invasion, and easy to metastasize to distant sites. Also, GAS is typically resistant to chemo/radiotherapy. Few studies have reported the molecular genetic characteristics of GAS. In order to investigate the molecular genetic characteristics of GAS and reveal its possible pathogenesis, 15 GAS patients were enrolled from Peking University People’s Hospital (2009–2019) and examined with next-generation sequencing (NGS). Based on the clinicopathologic feature analysis, we found that the presence of lymph node metastasis and extensive lymphovascular invasion were associated with poor survival outcomes of GAS (p = 0.0042 and p = 0.005, respectively). Based on the NGS testing, our results showed that the most frequently mutated gene was TP53 (8/15, 53.3%), followed by STK11, CDKN2A, and ARID1A. STK11 mutations were more frequent in well-differentiated GAS (33.3% vs. 0.0%, p = 0.026) and patients with extensive lymphovascular invasion (33.3% vs. 0.0%, p = 0.044). Survival analysis revealed that STK11 mutations were significantly associated with the poor prognosis of GAS (p = 0.01). Our results also showed that mutations in the target drug were detected in 53.3% of GAS patients. Patients with ERBB2 amplification (13.3%) presented the highest level of evidence according to OncoKB recommendations. These results indicate that the genomic alterations of GAS mainly involved the cell cycle and PI3K/AKT signaling pathways, and some therapeutic candidates were identified in GAS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Google Scholar 

  2. Wang SS, Sherman ME, Hildesheim A, Lacey JV, Devesa S (2004) Cervical adenocarcinoma and squamous cell carcinoma incidence trends among white women and black women in the United States for 1976–2000. Cancer 100(5):1035–1044

    Article  Google Scholar 

  3. Smith HO, Tiffany MF, Qualls CR, Key CR (2000) The rising incidence of adenocarcinoma relative to squamous cell carcinoma of the uterine cervix in the United States—a 24-year population-based study. Gynecol Oncol 78(2):97–105

    Article  CAS  Google Scholar 

  4. Adegoke O, Kulasingam S, Virnig B (2012) Cervical cancer trends in the United States: a 35-year population-based analysis. J Womens Health 21(10):1031–1037

    Article  Google Scholar 

  5. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, Vallejos CS, de Ruiz PA, Lima MA, Guimera N, Clavero O, Alejo M, Llombart-Bosch A, Cheng-Yang C, Tatti SA, Kasamatsu E, Iljazovic E, Odida M, Prado R, Seoud M, Grce M, Usubutun A, Jain A, Suarez GA, Lombardi LE, Banjo A, Menéndez C, Domingo EJ, Velasco J, Nessa A, Chichareon SC, Qiao YL, Lerma E, Garland SM, Sasagawa T, Ferrera A, Hammouda D, Mariani L, Pelayo A, Steiner I, Oliva E, Meijer CJ, al-Jassar WF, Cruz E, Wright TC, Puras A, Llave CL, Tzardi M, Agorastos T, Garcia-Barriola V, Clavel C, Ordi J, Andújar M, Castellsagué X, Sánchez GI, Nowakowski AM, Bornstein J, Muñoz N, Bosch FX, Retrospective International Survey and HPV Time Trends Study Group (2010) Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 11(11):1048–1056

    Article  Google Scholar 

  6. Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Muñoz N (2008) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26:Suppl 10:K1-16

  7. Nicolás I, Marimon L, Barnadas E, Saco A, Rodríguez-Carunchio L, Fusté P, Martí C, Rodriguez-Trujillo A, Torne A, del Pino M, Ordi J (2019) HPV-negative tumors of the uterine cervix. Modern Pathology 32:1189–1196

    Article  Google Scholar 

  8. Pirog EC, Lloveras B, Molijn A et al (2014) HPV prevalence and genotypes in different histological subtypes of cervical adenocarcinoma, a worldwide analysis of 760 cases. Mod Pathol 27(12):1559–1567

    Article  CAS  Google Scholar 

  9. Molijn A, Jenkins D, Chen W, Zhang X, Pirog E, Enqi W, Liu B, Schmidt J, Cui J, Qiao Y, Quint W, on behalf of Chinese HPV Typing Group (2016) The complex relationship between human papillomavirus and cervical adenocarcinoma. Int J Cancer 138(2):409–416

    Article  CAS  Google Scholar 

  10. Kurman RJ, Carcangiu ML, Herrington CS, Young RH (2019) WHO classification of tumours of female genital tumours. 5th ed. International Agency for Research on Cancer, Lyon

    Google Scholar 

  11. Karamurzin YS, Kiyokawa T, Parkash V, Jotwani AR, Patel P, Pike MC, Soslow RA, Park KJ (2015) Gastric-type Endocervical adenocarcinoma: an aggressive tumor with unusual metastatic patterns and poor prognosis. Am J Surg Pathol 39(11):1449–1457

    Article  Google Scholar 

  12. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio L, Cibulskis K, Bertelsen B, Romero-Cordoba S, Treviño V, Vazquez-Santillan K, Guadarrama AS, Wright AA, Rosenberg MW, Duke F, Kaplan B, Wang R, Nickerson E, Walline HM, Lawrence MS, Stewart C, Carter SL, McKenna A, Rodriguez-Sanchez IP, Espinosa-Castilla M, Woie K, Bjorge L, Wik E, Halle MK, Hoivik EA, Krakstad C, Gabiño NB, Gómez-Macías GS, Valdez-Chapa LD, Garza-Rodríguez ML, Maytorena G, Vazquez J, Rodea C, Cravioto A, Cortes ML, Greulich H, Crum CP, Neuberg DS, Hidalgo-Miranda A, Escareno CR, Akslen LA, Carey TE, Vintermyr OK, Gabriel SB, Barrera-Saldaña HA, Melendez-Zajgla J, Getz G, Salvesen HB, Meyerson M (2014) Landscape of genomic alterations in cervical carcinomas. Nature 506(7488):371–375

    Article  CAS  Google Scholar 

  13. Wright AA, Howitt BE, Myers AP, Dahlberg SE, Palescandolo E, van Hummelen P, MacConaill LE, Shoni M, Wagle N, Jones RT, Quick CM, Laury A, Katz IT, Hahn WC, Matulonis UA, Hirsch MS (2013) Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer 119(21):3776–3783

    Article  CAS  Google Scholar 

  14. Chung TK, Van Hummelen P, Chan PK et al (2015) Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. Int J Cancer 137(4):776–783

    Article  CAS  Google Scholar 

  15. Cancer Genome Atlas Research Network et al (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543(7645):378–384

    Article  Google Scholar 

  16. Kojima A, Mikami Y, Sudo T, Yamaguchi S, Kusanagi Y, Ito M, Nishimura R (2007) Gastric morphology and immunophenotype predict poor outcome in mucinous adenocarcinoma of the uterine cervix. Am J Surg Pathol 31(5):664–672

    Article  Google Scholar 

  17. Cao J, Chen L, Li H, Chen H, Yao J, Mu S, Liu W, Zhang P, Cheng Y, Liu B, Hu Z, Chen D, Kang H, Hu J, Wang A, Wang W, Yao M, Chrin G, Wang X, Zhao W, Li L, Xu L, Guo W, Jia J, Chen J, Wang K, Li G, Shi W (2019) An accurate and comprehensive clinical sequencing assay for cancer targeted and immunotherapies. Oncologist 24(12):e1294–ee302

    Article  CAS  Google Scholar 

  18. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36(20):2105–2122

    Article  CAS  Google Scholar 

  19. Garg S, Nagaria TS, Clarke B, Freedman O, Khan Z, Schwock J, Bernardini MQ, Oza AM, Han K, Smith AC, Stockley TL, Rouzbahman M (2019) Molecular characterization of gastric-type endocervical adenocarcinoma using next-generation sequencing. Mod Pathol 32(12):1823–1833

    Article  CAS  Google Scholar 

  20. Hodgson A, Howitt BE, Park KJ, Lindeman N, Nucci MR, Parra-Herran C (2020) Genomic characterization of HPV-related and gastric-type endocervical adenocarcinoma: correlation with subtype and clinical behavior. Int J Gynecol Pathol 39(6):578–586

    Article  CAS  Google Scholar 

  21. Chakravarty D, Gao J, Phillips SM et al (2017) OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol PO.17.00011

  22. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hosteller R, Cleary K, Signer SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weslon A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342(6250):705–708

    Article  CAS  Google Scholar 

  23. Petitjean A, Achatz MI, Borresen-Dale AL et al (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26(15):2157–2165

    Article  CAS  Google Scholar 

  24. Li VD, Li KH, Li JT (2019) TP53 mutations as potential prognostic markers for specific cancers: analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J Cancer Res Clin Oncol 145(3):625–636

    Article  CAS  Google Scholar 

  25. Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, Stanley MA, Franceschi S (2016) Carcinogenic human papillomavirus infection. Nat Rev Dis Primers 2:16086

    Article  Google Scholar 

  26. Yemelyanova A, Vang R, Kshirsagar M et al (2011) Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol 24(9):1248–1253

    Article  CAS  Google Scholar 

  27. Mesevre EE, Nucci MR (2016) Peutz–Jeghers syndrome: pathobiology, pathologic manifestations, and suggestions for recommending genetic testing in pathology reports. Surgical pathology clinics 9(2):243–268

    Article  Google Scholar 

  28. Beggs AD, Latchford AR, Vasen HF et al (2010) Peutz–Jeghers syndrome: a systematic review and recommendations for management. Gut 59(7):975–986

    Article  CAS  Google Scholar 

  29. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, Ali SM, Elvin JA, Singal G, Ross JS, Fabrizio D, Szabo PM, Chang H, Sasson A, Srinivasan S, Kirov S, Szustakowski J, Vitazka P, Edwards R, Bufill JA, Sharma N, Ou SHI, Peled N, Spigel DR, Rizvi H, Aguilar EJ, Carter BW, Erasmus J, Halpenny DF, Plodkowski AJ, Long NM, Nishino M, Denning WL, Galan-Cobo A, Hamdi H, Hirz T, Tong P, Wang J, Rodriguez-Canales J, Villalobos PA, Parra ER, Kalhor N, Sholl LM, Sauter JL, Jungbluth AA, Mino-Kenudson M, Azimi R, Elamin YY, Zhang J, Leonardi GC, Jiang F, Wong KK, Lee JJ, Papadimitrakopoulou VA, Wistuba II, Miller VA, Frampton GM, Wolchok JD, Shaw AT, Jänne PA, Stephens PJ, Rudin CM, Geese WJ, Albacker LA, Heymach JV (2018) STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov 8(7):822–835

    Article  CAS  Google Scholar 

  30. Hirose S, Murakami N, Takahashi K, Kuno I, Takayanagi D, Asami Y, Matsuda M, Shimada Y, Yamano S, Sunami K, Yoshida K, Honda T, Nakahara T, Watanabe T, Komatsu M, Hamamoto R, Kato MK, Matsumoto K, Okuma K, Kuroda T, Okamoto A, Itami J, Kohno T, Kato T, Shiraishi K, Yoshida H (2020) Genomic alterations in STK11 can predict clinical outcomes in cervical cancer patients. Gynecol Oncol 156(1):203–210

    Article  CAS  Google Scholar 

  31. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba II, Fong KM, Toyooka S, Shimizu N, Fujisawa T, Minna JD, Gazdar AF (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65(5):1642–1646

    Article  CAS  Google Scholar 

  32. Slamon DJ, Godolphin W, Jones LA, Holt J, Wong S, Keith D, Levin W, Stuart S, Udove J, Ullrich A, et (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707-12

  33. Wen W, Chen WS, Xiao N et al (2015) Mutations in the kinase domain of the HER2/ERBB2 gene identified in a wide variety of human cancers. J Mol Diagn 17(5):487–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Pathology, Peking University People’s Hospital, for providing access to archival materials and a great study team. The authors also wish to thank OrigiMed for the NGS service.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: D.S. and S.L. Case selection and review: S.L. and X.Z. Data analysis and interpretation: S.L. and J.S. Administrative, technical, or material support: F.K., L.L., X.D., and K.W. Manuscript preparation: all authors.

Corresponding author

Correspondence to Danhua Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 13 kb)

Fig. S1

Histopathologic appearances of GAS. A Well-differentiated GAS with clear and vacuolated cytoplasm and limited desmoplasia; STK11 truncation SNV (HE, ×100). B Moderately to poorly differentiated GAS, which glands are lined by cells with variable nuclear changes, including large vesicular nuclei with visible nucleoli; TP53 hotspot mutation with loss of heterozygosity (HE, ×100). C Well-differentiated GAS with lymph node metastases; STK11 substitution/indel SNV (HE, ×100). D Well-differentiated GAS with fallopian tube involvement; STK11 substitution/indel SNV (HE, ×100). E GAS with diffuse positivity of MUC6 (IHC, ×100). F GAS displays negative immunoreactivity of p16 (IHC, ×100). G GAS shows diffuse p53 overexpression (mutation type-diffuse, MTD) (IHC, ×100). H GAS exhibits a complete absence of p53 IHC (mutation type-null, MTN) (IHC, ×100) (JPG 693 kb)

Fig. S2

The prognosis difference between the well-differentiated and the moderately/poorly differentiated GAS patients (PDF 46 kb)

Fig. S3

The Integrative Genomics Viewer (IGV) results of STK11 mutations (PDF 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Shi, J., Zhang, X. et al. Comprehensive genomic profiling and prognostic analysis of cervical gastric-type mucinous adenocarcinoma. Virchows Arch 479, 893–903 (2021). https://doi.org/10.1007/s00428-021-03080-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-021-03080-y

Keywords

Navigation