Advertisement

Virchows Archiv

, Volume 473, Issue 3, pp 329–340 | Cite as

MicroRNA dysregulation in adenoid cystic carcinoma of the salivary gland in relation to prognosis and gene fusion status: a cohort study

  • Simon AndreasenEmail author
  • Qihua Tan
  • Tina Klitmøller Agander
  • Thomas V. O. Hansen
  • Petr Steiner
  • Kristine Bjørndal
  • Estrid Høgdall
  • Stine Rosenkilde Larsen
  • Daiva Erentaite
  • Caroline Holkmann Olsen
  • Benedicte Parm Ulhøi
  • Steffen Heegaard
  • Irene Wessel
  • Preben Homøe
Original Article
  • 182 Downloads

Abstract

Adenoid cystic carcinoma (ACC) is among the most frequent malignancies of the salivary gland, and is notorious for its prolonged clinical course characterized by frequent recurrences often years after initial treatment. No molecular marker has been shown to have independent prognostic value in ACC, including characteristic gene fusions involving MYB, MYBL1, and NFIB. MicroRNA has been shown to be associated with clinical outcome in numerous malignancies, including one study of ACC, warranting further validation of this class of markers in this disease. Here, we investigate the prognostic value of microRNA in two ACC cohorts: a training cohort (n = 64) and a validation cohort (n = 120) with microarray and qPCR. In the training cohort, multivariate analysis of microarray data found high expression of hsa-miR-6835-3p to be associated with reduced recurrence-free survival (RFS) (p = 0.016). Measuring the highest ranking microRNAs identified in survival analysis in the same cohort, qPCR identified high expression of hsa-miR-4676 to be associated with reduced overall survival (OS) and high expression of hsa-mir-1180 to be associated with improved RFS. This was not confirmed in the validation cohort, in which qPCR identified high expression of hsa-mir-21, hsa-mir-181a-2, and hsa-mir-152 to be associated with reduced OS and high expression of hsa-miR-374c to be associated with improved RFS. Interestingly, two distinct subsets of ACC separated in microRNA expression irrespective of gene fusion status, but without significant difference in outcome. Collectively, qPCR identified several microRNAs associated with OS and RFS, and different subsets of ACC separated according to microRNA expression, suggestive of ACC being a heterogeneous group of malignancies in its microRNA profile.

Keywords

Adenoid cystic carcinoma Salivary gland microRNA Prognosis MYB MYBL1 

Notes

Acknowledgements

We wish to thank Katarina Larsen and Lene Pedersen for valuable assistance with miRNA extraction.

Funding

SA was supported by Einar Willumsen Foundation, Merchant Kristjan Kjær and wife Margrethe Kjær’s Foundation, The Danielsen Foundation, Else and Mogens Wedell-Wedellsborg’s Foundation, Region Zealand’s Research Fund, Hans Skouby and wife Emma Skouby’s Foundation, and the A.P. Møller Foundation for the Advancement of Medical Research.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

428_2018_2423_MOESM1_ESM.docx (134 kb)
ESM 1 (DOCX 134 kb)
428_2018_2423_MOESM2_ESM.xlsx (3.3 mb)
Table S1 (DOCX 18 kb)
428_2018_2423_MOESM3_ESM.docx (119 kb)
Table S2 (DOCX 14 kb)
428_2018_2423_MOESM4_ESM.xlsx (75 kb)
Table S3 (DOCX 43 kb)
428_2018_2423_MOESM5_ESM.xlsx (48 kb)
Table S4 (XLSX 3328 kb)
428_2018_2423_MOESM6_ESM.xlsx (414 kb)
Table S5 (DOCX 119 kb)

References

  1. 1.
    Bjørndal K, Krogdahl A, Therkildsen MH, Charabi B, Kristensen CA, Andersen E, Schytte S, Primdahl H, Johansen J, Pedersen HB, Andersen LJ, Godballe C (2015) Salivary adenoid cystic carcinoma in Denmark 1990–2005: Outcome and independent prognostic factors including the benefit of radiotherapy. Results of the Danish head and neck Cancer group (DAHANCA). Oral Oncol 51:1138–1142.  https://doi.org/10.1016/j.oraloncology.2015.10.002 CrossRefPubMedGoogle Scholar
  2. 2.
    Kokemueller H, Eckardt A, Brachvogel P, Hausamen JE (2004) Adenoid cystic carcinoma of the head and neck—a 20 years experience. Int J Oral Maxillofac Surg 33:25–31.  https://doi.org/10.1054/ijom.2003.0448 CrossRefPubMedGoogle Scholar
  3. 3.
    Oplatek A, Ozer E, Agrawal A, Bapna S, Schuller DE (2010) Patterns of recurrence and survival of head and neck adenoid cystic carcinoma after definitive resection. Laryngoscope 120:65–70.  https://doi.org/10.1002/lary.20684 CrossRefPubMedGoogle Scholar
  4. 4.
    Chen AM, Bucci MK, Weinberg V, Garcia J, Quivey JM, Schechter NR, Phillips TL, Fu KK, Eisele DW (2006) Adenoid cystic carcinoma of the head and neck treated by surgery with or without postoperative radiation therapy: Prognostic features of recurrence. Int J Radiat Oncol Biol Phys 66:152–159.  https://doi.org/10.1016/j.ijrobp.2006.04.014 CrossRefPubMedGoogle Scholar
  5. 5.
    Balamucki CJ, Amdur RJ, Werning JW, Vaysberg M, Morris CG, Kirwan JM, Mendenhall WM (2012) Adenoid cystic carcinoma of the head and neck. Am J Otolaryngol 33:510–518.  https://doi.org/10.1016/j.amjoto.2011.11.006 CrossRefPubMedGoogle Scholar
  6. 6.
    Adelstein DJ, Koyfman SA, El-Naggar AK, Hanna EY (2012) Biology and management of salivary gland cancers. Semin Radiat Oncol 22:245–253.  https://doi.org/10.1016/j.semradonc.2012.03.009 CrossRefPubMedGoogle Scholar
  7. 7.
    Dillon PM, Chakraborty S, Moskaluk CS, Joshi PJ, Thomas CY (2016) Adenoid cystic carcinoma: a review of recent advances, molecular targets, and clinical trials. Head Neck 38:620–627.  https://doi.org/10.1002/hed.23925 CrossRefPubMedGoogle Scholar
  8. 8.
    Persson M, Andrén Y, Mark J, Horlings HM, Persson F, Stenman G (2009) Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A 106:18740–18744.  https://doi.org/10.1073/pnas.0909114106 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mitani Y, Liu B, Rao PH, Borra VJ, Zafereo M, Weber RS, Kies M, Lozano G, Futreal A, Caulin C, El-Naggar AK (2016) Novel MYBL1 gene rearrangements with recurrent MYBL1-NFIB fusions in salivary adenoid cystic carcinomas lacking t(6;9) translocations. Clin Cancer Res 22:725–733.  https://doi.org/10.1158/1078-0432.CCR-15-2867-T CrossRefPubMedGoogle Scholar
  10. 10.
    Ho AS, Kannan K, Roy DM et al (2013) The mutational landscape of adenoid cystic carcinoma. Nat Genet 45:791–798.  https://doi.org/10.1038/ng.2643 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu B, Mitani Y, Rao X, Zafereo M, Zhang J, Zhang J, Futreal A, Lozano G, El-Naggar AK (2017) Spatio-temporal genomic heterogeneity, phylogeny, and metastatic evolution in salivary adenoid cystic carcinoma. JNCI J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djx033
  12. 12.
    Sajed DP, Faquin WC, Carey C, Severson EA, Afrogheh A, Johnson C, Blacklow SC, Chau NG, Lin DT, Krane JF, Jo VY, Garcia JJ, Scholl LM, Aster JC (2017) Diffuse staining for activated NOTCH1 correlates with NOTCH1 mutation status and is associated with worse outcome in adenoid cystic carcinoma. Am J Surg Pathol 41:1473–1482.  https://doi.org/10.1097/PAS.0000000000000945 CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrarotto R, Mitani Y, Diao L et al (2017) Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol 35:352–360.  https://doi.org/10.1200/JCO.2016.67.5264 CrossRefPubMedGoogle Scholar
  14. 14.
    Frerich CA, Brayer KJ, Painter BM, Kang H, Mitani Y, El-naggar AK, Ness SA (2017) Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget 9:7341–7358.  https://doi.org/10.18632/oncotarget.23641 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Spiro RH (1997) Distant metastasis in adenoid cystic carcinoma of salivary origin. Am J Surg 174:495–498CrossRefPubMedGoogle Scholar
  16. 16.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114.  https://doi.org/10.1038/nrg2290 CrossRefPubMedGoogle Scholar
  17. 17.
    Ul Hussain M (2012) Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res 349:405–413.  https://doi.org/10.1007/s00441-012-1438-0 CrossRefPubMedGoogle Scholar
  18. 18.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866.  https://doi.org/10.1038/nrc1997 CrossRefPubMedGoogle Scholar
  19. 19.
    Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20:22022207.  https://doi.org/10.1101/gad.1444406 CrossRefGoogle Scholar
  20. 20.
    Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) MicroRNAs in cancer management. Lancet Oncol 13:e249–e258.  https://doi.org/10.1016/S1470-2045(12)70073-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Mitani Y, Roberts DB, Fatani H, Weber RS, Kies MS, Lippman SM, El-Naggar AK (2013) MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome. PLoS One 8:e66778.  https://doi.org/10.1371/journal.pone.0066778 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93:387–391.  https://doi.org/10.1038/sj.bjc.6602678 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, Hayes DF, Hainaut P, Kim P, Mansfield E, Potapova O, Riegman P, Rubinstein Y, Seijo E, Somiari S, Watson P, Weier HU, Zhu C, Vaught J (2011) Biospeciment reporting for improved study quality (BRISQ). J Proteome Res 10:3429–3438.  https://doi.org/10.1021/pr200021n CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Erichsen R, Lash TL, Hamilton-Dutoit SJ, Bjerregaard B, Vyberg M, Pedersen L (2010) Existing data sources for clinical epidemiology: the Danish National Pathology Registry and Data Bank. Clin Epidemiol 2:51–56CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bjørndal K, Krogdahl A, Therkildsen MH, Overgaard J, Johansen J, Kristensen CA, Homøe P, Sørensen CH, Andersen E, Bundgaard T, Primdahl H, Lambertsen H, Andersen LJ, Godballe C (2011) Salivary gland carcinoma in Denmark 1990-2005: a national study of incidence, site and histology. Results of the Danish head and neck Cancer group (DAHANCA). Oral Oncol 47:677–682.  https://doi.org/10.1016/j.oraloncology.2011.04.020 CrossRefPubMedGoogle Scholar
  26. 26.
    Stenman G, Licitra L, Said-Al-Naief N, van Zante A, Yarborough W (2017) Adenoid cystic carcinoma. In: El-Naggar A, Chan J, Grandis J, Takata T, Slootweg P (eds) World Health Organization classification of tumours. IARC Press, Lyon, 164–165Google Scholar
  27. 27.
    Andreasen S, Bjørndal K, Agander TK, Wessel I, Homøe P (2016) Tumors of the sublingual gland: a national clinicopathologic study of 29 cases. Eur Arch Otorhinolaryngol 273:3847–3856.  https://doi.org/10.1007/s00405-016-4000-y CrossRefPubMedGoogle Scholar
  28. 28.
    Andreasen S, Bishop JA, Hansen TV, Westra WH, Bilde A, von Buchwald C, Kiss K (2017) Human Papillomavirus-related Carcinoma with Adenoid Cystic-like Features of the Sinonasal Tract: Clinical and Morphological Characterization of 6 New Cases. Histopathology 70:880–888.  https://doi.org/10.1111/his.13162 CrossRefPubMedGoogle Scholar
  29. 29.
    Bishop JA, Andreasen S, Hang JF et al (2017) HPV-related Multiphenotypic Sinonasal Carcinoma. Am J Surg Pathol 41:1690–1701.  https://doi.org/10.1097/PAS.0000000000000944 CrossRefPubMedGoogle Scholar
  30. 30.
    Andreasen S, Melchior LC, Kiss K, Bishop JA, Høgdall E, Grauslund M, Wessel I, Homøe P, Agander TK (2018) The PRKD1 E710D hotspot mutation is highly specific in separating polymorphous adenocarcinoma of the palate from adenoid cystic carcinoma and pleomorphic adenoma on FNA. Cancer Cytopathol 126:275–281.  https://doi.org/10.1002/cncy.21959 CrossRefPubMedGoogle Scholar
  31. 31.
    Pedersen CB (2011) The danish civil registration system. Scand J Public Health 39:22–25.  https://doi.org/10.1177/1403494810387965 CrossRefPubMedGoogle Scholar
  32. 32.
    Helweg-Larsen K (2011) The danish register of causes of death. Scand J Public Health 39:26–29.  https://doi.org/10.1177/1403494811399958 CrossRefPubMedGoogle Scholar
  33. 33.
    Howe K (2017) Extraction of miRNAs from formalin-fixed paraffin-embedded (FFPE) tissues. Methods Mol Biol.  https://doi.org/10.1007/978-1-4939-6524-3_3
  34. 34.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193CrossRefPubMedGoogle Scholar
  35. 35.
    Skálová A, Vanecek T, Sima R, Laco J, Weinreb I, Perez-Ordonez B, Starek I, Geierova M, Simpson RH, Passador-Santos F, Ryska A, Leivo I, Kinkor Z, Michal M (2010) Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 34:599–608.  https://doi.org/10.1097/PAS.0b013e3181d9efcc PubMedCrossRefGoogle Scholar
  36. 36.
    Hudson JB, Collins BT (2014) MYB gene abnormalities t(6;9) in adenoid cystic carcinoma fine-needle aspiration biopsy using fluorescence in situ hybridization. Arch Pathol Lab Med 138:403–409.  https://doi.org/10.5858/arpa.2012-0736-OA CrossRefPubMedGoogle Scholar
  37. 37.
    Bass BP, Engel KB, Greytak SR, Moore HM (2014) A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue. How well do you know your FFPE specimen? Arch Pathol Lab Med 138:1520–1530.  https://doi.org/10.5858/arpa.2013-0691-RA CrossRefPubMedGoogle Scholar
  38. 38.
    Hall JS, Taylor J, Valentine HR, Irlam JJ, Eustace A, Hoskin PJ, Miller CJ, West CM (2012) Enhanced stability of microRNA expression facilitates classification of FFPE tumour samples exhibiting near total mRNA degradation. Br J Cancer 107:684–894.  https://doi.org/10.1038/bjc.2012.294 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674.  https://doi.org/10.1261/rna.642907 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yu SL, Chen HY, Chang GC et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57.  https://doi.org/10.1016/j.ccr.2007.12.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Spahn M, Kneitz S, Scholz CJ, Stenger N, Rüdiger T, Ströbel P, Riedmiller H, Kneitz B (2010) Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127:394–403.  https://doi.org/10.1002/ijc.24715 PubMedCrossRefGoogle Scholar
  42. 42.
    Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436.  https://doi.org/10.1001/jama.299.4.425 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Amit M, Binenbaum Y, Trejo–Leider L, Sharma K, Ramer N, Ramer I, Agbetoba A, Miles B, Xang X, Lei D, Bjørndal K, Godballe C, Mücke T, Wolff KD, Eckardt AM, Copelli C, Sesenna E, Palmer F, Ganly I, Patel S, Gil Z (2015) International collaborative validation of intraneural invasion as a prognostic marker in adenoid cystic carcinoma of the head and neck. Head Neck 37:1038–1045.  https://doi.org/10.1002/hed.23710 CrossRefPubMedGoogle Scholar
  44. 44.
    Barrett AW, Speight PM (2009) Perineural invasion in adenoid cystic carcinoma of the salivary glands: a valid prognostic indicator? Oral Oncol 45:936–940.  https://doi.org/10.1016/j.oraloncology.2009.07.001 CrossRefPubMedGoogle Scholar
  45. 45.
    Ma W, Kang Y, Ning L, Tan J, Wang H, Ying Y (2017) Identification of microRNAs involved in gefitinib resistance of non-small-cell lung cancer through the insulin-like growth factor receptor 1 signaling pathway. Exp Ther Med 14:2853–2862.  https://doi.org/10.3892/etm.2017.4847 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Andersson MK, Afshari MK, Andre Y, Wick MJ, Stenman G (2017) Targeting the oncogenic transcriptional regulator MYB in adenoid cystic carcinoma by inhibition of IGF1R/AKT signaling. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djx017
  47. 47.
    Jang JS, Simon VA, Feddersen RM, Rakhshan F, Schultz DA, Zschunke MA, Lingle WL, Kolbert CP, Jen J (2011) Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays. BMC Genomics 12:144.  https://doi.org/10.1186/1471-2164-12-144 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen Y, Gelfond JA, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 10:407.  https://doi.org/10.1186/1471-2164-10-407 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesomplete J (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36:e143.  https://doi.org/10.1093/nar/gkn725 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pérez-Rivas LG, Jerez JM, Carmona R, de Luque V, Vicioso L, Claros MG, Viguera E, Pajares B, Sánchez A, Ribelles N, Alba E, Lozano J (2014) A microRNA signature associated with early recurrence in breast cancer. PLoS One 14:e91884.  https://doi.org/10.1371/journal.pone.0091884 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Simon Andreasen
    • 1
    • 2
    Email author
  • Qihua Tan
    • 3
  • Tina Klitmøller Agander
    • 4
  • Thomas V. O. Hansen
    • 5
  • Petr Steiner
    • 6
    • 7
  • Kristine Bjørndal
    • 8
  • Estrid Høgdall
    • 9
  • Stine Rosenkilde Larsen
    • 10
  • Daiva Erentaite
    • 11
  • Caroline Holkmann Olsen
    • 12
  • Benedicte Parm Ulhøi
    • 13
  • Steffen Heegaard
    • 4
    • 14
  • Irene Wessel
    • 2
  • Preben Homøe
    • 1
  1. 1.Department of Otorhinolaryngology and Maxillofacial SurgeryZealand University HospitalKøgeDenmark
  2. 2.Department of Otorhinolaryngology Head and Neck Surgery and Audiology, RigshospitaletCopenhagenDenmark
  3. 3.Unit of Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
  4. 4.Department of Pathology, RigshospitaletCopenhagenDenmark
  5. 5.Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
  6. 6.Department of PathologyCharles University in Prague, Faculty of MedicinePilsenCzech Republic
  7. 7.Bioptic Laboratory Ltd, Molecular Pathology LaboratoryPilsenCzech Republic
  8. 8.Department of ORL–Head and Neck SurgeryOdense University HospitalOdenseDenmark
  9. 9.Department of Pathology, Herlev HospitalUniversity of CopenhagenHerlevDenmark
  10. 10.Department of PathologyOdense University HospitalOdenseDenmark
  11. 11.Department of PathologyAalborg University HospitalAalborgDenmark
  12. 12.Department of PathologyZealand University HospitalRoskildeDenmark
  13. 13.Department of PathologyAarhus University HospitalAarhusDenmark
  14. 14.Department of OphthalmologyRigshospitalet-GlostrupCopenhagenDenmark

Personalised recommendations