Skip to main content

Advertisement

Log in

Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Next-generation sequencing (NGS) has become a promising approach for tumor somatic mutation detection. However, stringent validation is required for its application on clinical specimens, especially for low-quality formalin-fixed paraffin-embedded (FFPE) tissues. Here, we validated the performance of an amplicon-based targeted NGS assay, OncoAim™ DNA panel, on both commercial reference FFPE samples and clinical FFPE samples of Chinese colorectal cancer (CRC) patients. Then we profiled the mutation spectrum of 648 Chinese CRC patients in a multicenter study to explore its clinical utility. This NGS assay achieved 100% test specificity and 95–100% test sensitivity for variants with mutant allele frequency (MAF) ≥ 5% when median read depth ≥ 500×. The orthogonal methods including amplification refractory mutation system (ARMS)-PCR and Sanger sequencing validated that NGS generated three false negatives (FNs) but no false positives (FPs) among 516 clinical samples for KRAS aberration detection. Genomic profiling of Chinese CRC patients with this assay revealed that 63.3% of the tumors harbored clinically actionable alterations. Besides the commonly mutated genes including TP53 (52.82%), KRAS (46.68%), APC (24.09%), PIK3CA (18.94%), SMAD4 (9.47%), BRAF (6.15%), FBXW7 (5.32%), and NRAS (4.15%), other less frequently mutated genes were also identified. Statistically significant association of specific mutated genes with certain clinicopathological features was detected, e.g., both BRAF and PIK3CA were more prevalent in right-side CRC (p < 0.001 and p = 0.002, respectively). We concluded this targeted NGS assay is qualified for clinical practice, and our findings could help the diagnosis and prognosis of Chinese CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, Leiserson MDM, Miller CA, Welch JS, Walter MJ, Wendl MC, Ley TJ, Wilson RK, Raphael BJ, Ding L (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339. https://doi.org/10.1038/nature12634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mendelsohn J (2013) Personalizing oncology: perspectives and prospects. J Clin Oncol 31:1904–1911. https://doi.org/10.1200/JCO.2012.45.3605

    Article  PubMed  CAS  Google Scholar 

  3. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558. https://doi.org/10.1126/science.1235122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang J, Zheng J, Yang Y, Lu J, Gao J, Lu T, Sun J, Jiang H, Zhu Y, Zheng Y, Liang Z, Liu T (2015) Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 cases. Sci Rep 5:18678. https://doi.org/10.1038/srep18678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, Penault-Llorca F, Rougier P, Vincenzi B, Santini D, Tonini G, Cappuzzo F, Frattini M, Molinari F, Saletti P, De Dosso S, Martini M, Bardelli A, Siena S, Sartore-Bianchi A, Tabernero J, Macarulla T, Di Fiore F, Gangloff AO, Ciardiello F, Pfeiffer P, Qvortrup C, Hansen TP, Van Cutsem E, Piessevaux H, Lambrechts D, Delorenzi M, Tejpar S (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762. https://doi.org/10.1016/S1470-2045(10)70130-3

    Article  PubMed  CAS  Google Scholar 

  6. Tafe LJ (2017) Molecular mechanisms of therapy resistance in solid tumors: chasing “moving” targets. Virchows Arch 471:155–164. https://doi.org/10.1007/s00428-017-2101-7

    Article  PubMed  Google Scholar 

  7. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, Ciardiello F, D'Hoore A, Diaz-Rubio E, Douillard JY, Ducreux M, Falcone A, Grothey A, Gruenberger T, Haustermans K, Heinemann V, Hoff P, Kohne CH, Labianca R, Laurent-Puig P, Ma B, Maughan T, Muro K, Normanno N, Osterlund P, Oyen WJ, Papamichael D, Pentheroudakis G, Pfeiffer P, Price TJ, Punt C, Ricke J, Roth A, Salazar R, Scheithauer W, Schmoll HJ, Tabernero J, Taieb J, Tejpar S, Wasan H, Yoshino T, Zaanan A, Arnold D (2016) ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 27:1386–1422. https://doi.org/10.1093/annonc/mdw235

    Article  PubMed  Google Scholar 

  8. (Updated November 23, 2016,Accessed January 10, 2017) National comprehensive cancer network clinical practice guidelines in oncology (NCCN Guidelines®) Colon cancer version 1.2017. nccn.org/

  9. (Updated November 23, 2016. Accessed January 10, 2017) National comprehensive cancer network clinical practice guidelines in oncology (NCCN Guidelines®) rectal cancer version 1.2017. nccn.org/

  10. Kamps R, Brandao RD, Bosch BJ, Paulussen AD, Xanthoulea S, Blok MJ, Romano A (2017) Next-generation sequencing in oncology: genetic diagnosis, risk prediction and cancer classification. Int J Mol Sci 18. https://doi.org/10.3390/ijms18020308

  11. Hirsch B, Endris V, Lassmann S, Weichert W, Pfarr N, Schirmacher P, Kovaleva V, Werner M, Bonzheim I, Fend F, Sperveslage J, Kaulich K, Zacher A, Reifenberger G, Kohrer K, Stepanow S, Lerke S, Mayr T, Aust DE, Baretton G, Weidner S, Jung A, Kirchner T, Hansmann ML, Burbat L, von der Wall E, Dietel M, Hummel M (2018) Multicenter validation of cancer gene panel-based next-generation sequencing for translational research and molecular diagnostics. Virchows Arch. https://doi.org/10.1007/s00428-017-2288-7

  12. Kaul KL (2017) Preparing pathology for precision medicine: challenges and opportunities. Virchows Arch 471:141–146. https://doi.org/10.1007/s00428-017-2141-z

    Article  PubMed  Google Scholar 

  13. Ludyga N, Grunwald B, Azimzadeh O, Englert S, Hofler H, Tapio S, Aubele M (2012) Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch 460:131–140. https://doi.org/10.1007/s00428-011-1184-9

    Article  PubMed  CAS  Google Scholar 

  14. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971. https://doi.org/10.1016/S0002-9440(10)64472-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Do H, Dobrovic A (2015) Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem 61:64–71. https://doi.org/10.1373/clinchem.2014.223040

    Article  PubMed  CAS  Google Scholar 

  16. Deans ZC, Costa JL, Cree I, Dequeker E, Edsjo A, Henderson S, Hummel M, Ligtenberg MJ, Loddo M, Machado JC, Marchetti A, Marquis K, Mason J, Normanno N, Rouleau E, Schuuring E, Snelson KM, Thunnissen E, Tops B, Williams G, van Krieken H, Hall JA, ASBL IQNP (2017) Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN path ASBL. Virchows Arch 470:5–20. https://doi.org/10.1007/s00428-016-2025-7

    Article  PubMed  CAS  Google Scholar 

  17. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, Sun J, Juhn F, Brennan K, Iwanik K, Maillet A, Buell J, White E, Zhao M, Balasubramanian S, Terzic S, Richards T, Banning V, Garcia L, Mahoney K, Zwirko Z, Donahue A, Beltran H, Mosquera JM, Rubin MA, Dogan S, Hedvat CV, Berger MF, Pusztai L, Lechner M, Boshoff C, Jarosz M, Vietz C, Parker A, Miller VA, Ross JS, Curran J, Cronin MT, Stephens PJ, Lipson D, Yelensky R (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023–1031. https://doi.org/10.1038/nbt.2696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wong SQ, Li J, Tan AY, Vedururu R, Pang JM, Do H, Ellul J, Doig K, Bell A, MacArthur GA, Fox SB, Thomas DM, Fellowes A, Parisot JP, Dobrovic A, Cohort C (2014) Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genet 7:23. https://doi.org/10.1186/1755-8794-7-23

    Article  CAS  Google Scholar 

  19. Ryu D, Joung JG, Kim NK, Kim KT, Park WY (2016) Deciphering intratumor heterogeneity using cancer genome analysis. Hum Genet 135:635–642. https://doi.org/10.1007/s00439-016-1670-x

    Article  PubMed  CAS  Google Scholar 

  20. Lopez JI, De Petris G (2017) Discovering intratumor heterogeneity: the next frontier for pathologists. Pathologica 109:110–113

    PubMed  CAS  Google Scholar 

  21. Langley RE, Rothwell PM (2013) Potential biomarker for aspirin use in colorectal cancer therapy. Nat Rev Clin Oncol 10:8–10. https://doi.org/10.1038/nrclinonc.2012.216

    Article  PubMed  CAS  Google Scholar 

  22. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536. https://doi.org/10.1038/nature11156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Vagaja NN, Parry J, McCallum D, Thomas MA, Bentel JM (2015) Are all RAS mutations the same? Coexisting KRAS and NRAS mutations in a caecal adenocarcinoma and contiguous tubulovillous adenoma. J Clin Pathol 68:657–660. https://doi.org/10.1136/jclinpath-2015-202969

    Article  PubMed  CAS  Google Scholar 

  24. Larki P, Gharib E, Yaghoob Taleghani M, Khorshidi F, Nazemalhosseini-Mojarad E, Asadzadeh Aghdaei H (2017) Coexistence of KRAS and BRAF mutations in colorectal cancer: a case report supporting the concept of tumoral heterogeneity. Cell J 19:113–117. https://doi.org/10.22074/cellj.2017.5123

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jauhri M, Bhatnagar A, Gupta S, Bp M, Minhas S, Shokeen Y, Aggarwal S (2017) Prevalence and coexistence of KRAS, BRAF, PIK3CA, NRAS, TP53, and APC mutations in Indian colorectal cancer patients: next-generation sequencing-based cohort study. Tumour Biol 39:1010428317692265. https://doi.org/10.1177/1010428317692265

    Article  PubMed  Google Scholar 

  26. Vendrell JA, Grand D, Rouquette I, Costes V, Icher S, Selves J, Larrieux M, Barbe A, Brousset P, Solassol J (2017) High-throughput detection of clinically targetable alterations using next-generation sequencing. Oncotarget 8:40345–40358. https://doi.org/10.18632/oncotarget.15875

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eifert C, Pantazi A, Sun R, Xu J, Cingolani P, Heyer J, Russell M, Lvova M, Ring J, Tse JY, Lyle S, Protopopov A (2017) Clinical application of a cancer genomic profiling assay to guide precision medicine decisions. Per Med 14:309–325. https://doi.org/10.2217/pme-2017-0011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liang J, She Y, Zhu J, Wei L, Zhang L, Gao L, Wang Y, Xing J, Guo Y, Meng X, Li P (2016) Development and validation of an ultra-high sensitive next-generation sequencing assay for molecular diagnosis of clinical oncology. Int J Oncol 49:2088–2104. https://doi.org/10.3892/ijo.2016.3707

    Article  PubMed  CAS  Google Scholar 

  29. Fontanges Q, De Mendonca R, Salmon I, Le Mercier M, D'Haene N (2016) Clinical application of targeted next generation sequencing for colorectal cancers. Int J Mol Sci 17. https://doi.org/10.3390/ijms17122117

  30. Zhang L, Chen L, Sah S, Latham GJ, Patel R, Song Q, Koeppen H, Tam R, Schleifman E, Mashhedi H, Chalasani S, Fu L, Sumiyoshi T, Raja R, Forrest W, Hampton GM, Lackner MR, Hegde P, Jia S (2014) Profiling cancer gene mutations in clinical formalin-fixed, paraffin-embedded colorectal tumor specimens using targeted next-generation sequencing. Oncologist 19:336–343. https://doi.org/10.1634/theoncologist.2013-0180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, Kanagal-Shamanna R, Greaves WO, Medeiros LJ, Aldape KD, Luthra R (2013) Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn 15:607–622. https://doi.org/10.1016/j.jmoldx.2013.05.003

    Article  PubMed  CAS  Google Scholar 

  32. Robbe P, Popitsch N, Knight SJL, Antoniou P, Becq J, He M, Kanapin A, Samsonova A, Vavoulis DV, Ross MT, Kingsbury Z, Cabes M, Ramos SDC, Page S, Dreau H, Ridout K, Jones LJ, Tuff-Lacey A, Henderson S, Mason J, Buffa FM, Verrill C, Maldonado-Perez D, Roxanis I, Collantes E, Browning L, Dhar S, Damato S, Davies S, Caulfield M, Bentley DR, Taylor JC, Turnbull C, Schuh A (2018) Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: pilot study for the 100,000 Genomes Project. Genet Med. https://doi.org/10.1038/gim.2017.241

  33. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR, Murphy KM (2010) Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 12:425–432. https://doi.org/10.2353/jmoldx.2010.090188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ogasawara N, Bando H, Kawamoto Y, Yoshino T, Tsuchihara K, Ohtsu A, Esumi H (2011) Feasibility and robustness of amplification refractory mutation system (ARMS)-based KRAS testing using clinically available formalin-fixed, paraffin-embedded samples of colorectal cancers. Jpn J Clin Oncol 41:52–56. https://doi.org/10.1093/jjco/hyq151

    Article  PubMed  Google Scholar 

  35. Huang T, Zhuge J, Zhang WW (2013) Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR. Biomark Res 1:3. https://doi.org/10.1186/2050-7771-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen Q, Lu P, Jones AV, Cross NC, Silver RT, Wang YL (2007) Amplification refractory mutation system, a highly sensitive and simple polymerase chain reaction assay, for the detection of JAK2 V617F mutation in chronic myeloproliferative disorders. J Mol Diagn 9:272–276. https://doi.org/10.2353/jmoldx.2007.060133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shen Y, Wang J, Han X, Yang H, Wang S, Lin D, Shi Y (2013) Effectors of epidermal growth factor receptor pathway: the genetic profiling of KRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine. PLoS One 8:e81628. https://doi.org/10.1371/journal.pone.0081628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lan YT, Jen-Kou L, Lin CH, Yang SH, Lin CC, Wang HS, Chen WS, Lin TC, Jiang JK, Chang SC (2015) Mutations in the RAS and PI3K pathways are associated with metastatic location in colorectal cancers. J Surg Oncol 111:905–910. https://doi.org/10.1002/jso.23895

    Article  PubMed  CAS  Google Scholar 

  39. Ye JX, Liu Y, Qin Y, Zhong HH, Yi WN, Shi XY (2015) KRAS and BRAF gene mutations and DNA mismatch repair status in Chinese colorectal carcinoma patients. World J Gastroenterol 21:1595–1605. https://doi.org/10.3748/wjg.v21.i5.1595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ling YYJ, Qiu T et al (2012) Detection of KRAS, BRAF, PIK3CA and EGFR gene mutations in colorectal carcinoma. Zhonghua Bing Li Xue Za Zhi 41:4

    Google Scholar 

  41. Al-Shamsi HO, Jones J, Fahmawi Y, Dahbour I, Tabash A, Abdel-Wahab R, Abousamra AO, Shaw KR, Xiao L, Hassan MM, Kipp BR, Kopetz S, Soliman AS, McWilliams RR, Wolff RA (2016) Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern. J Gastrointest Oncol 7:882–902. https://doi.org/10.21037/jgo.2016.11.02

    Article  PubMed  PubMed Central  Google Scholar 

  42. Korphaisarn K, Morris VK, Overman MJ, Fogelman DR, Kee BK, Raghav KPS, Manuel S, Shureiqi I, Wolff RA, Eng C, Menter D, Hamilton SR, Kopetz S, Dasari A (2017) FBXW7 missense mutation: a novel negative prognostic factor in metastatic colorectal adenocarcinoma. Oncotarget 8:39268–39279. https://doi.org/10.18632/oncotarget.16848

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18. https://doi.org/10.3390/ijms18010197

Download references

Acknowledgments

We would like to thank Singlera Genomics for the precious technical help. We thank all participant departments for providing their specimens and relevant information.

Funding

This work was supported by the funding from the National Key Research and Development Plan of Precision Medical research in China (2016YFC0906000), National Natural Science Foundation of China (81401990), and Key Research and Development Project of Department of Science and Technology in Sichuan Province (2017SZ0005).

Author information

Authors and Affiliations

Authors

Contributions

FY and YW conceived and designed the experiments; HL, YH, XZ, LL, ZZ, HS, SX, PH, HB, and ZL organized the work of identifying clinical cases, reviewing the slides, collecting the clinical information, and performing the experiments in participating laboratories; the Singlera Genomics (ZZ, RL, TT) developed customized pipeline for variant identifying to analyze sequencing data from reads alignment to variant calling and annotation; YW analyzed the NGS results; the Singlera Genomics contributed reagents/analysis tools; YW wrote the manuscript. FY revised the paper. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Feng Ye.

Ethics declarations

The present study was approved by the Ethics Committee of Sichuan University (No. K2016031).

Conflict of interest

ZZ, RL, and TT are members of the Singlera Genomics, Shanghai, China. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in the decision to publish the results.

Electronic supplementary material

Fig. S1

(PDF 6 kb)

ESM 1

(PDF 970 kb)

ESM 2

(XLSX 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, H., Hou, Y. et al. Performance validation of an amplicon-based targeted next-generation sequencing assay and mutation profiling of 648 Chinese colorectal cancer patients. Virchows Arch 472, 959–968 (2018). https://doi.org/10.1007/s00428-018-2359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-018-2359-4

Keywords

Navigation