Advertisement

Dual JAK1 and STAT3 mutations in a breast implant-associated anaplastic large cell lymphoma

  • Audrey Letourneau
  • Marie Maerevoet
  • Dina Milowich
  • Roland Dewind
  • Bettina Bisig
  • Edoardo Missiaglia
  • Laurence de Leval
Brief Report
  • 191 Downloads

Introduction

Breast implant-associated anaplastic large cell lymphoma (BI-ALCL), recently described as a distinctive form of CD30+ anaplastic large cell lymphoproliferation, was introduced as a new provisional T cell lymphoma entity in the 2017 WHO classification of hematological malignancies [1]. While the morphological and immunophenotypical features of BI-ALCL are indistinguishable from those of other ALK-negative ALCL, the specificity of BI-ALCL is its clinical presentation adjacent to a breast implant. Most cases confined to the periprosthetic effusion and capsule (seroma or “in situ” lymphoma) have excellent outcomes, and a minority of patients present with a breast tumor mass, which is an adverse prognostic factor [2, 3].

Yet, information on the genetic alterations associated with BI-ALCL is essentially limited to data derived from a few lymphoma specimens, all with seroma-associated presentation (summarized in Table 1) [ 4, 5, 6, 7]. Here, we report genetic findings in paired...

Notes

Author contributions

AL and DM performed research; MM and RD contributed essential clinical information; BB and EM analyzed the data and wrote the paper; LDL designed research and wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    WHO classification of tumours of the haematopoietic and lymphoid tissues (Revised 4th edition) (2017) IARC, LyonGoogle Scholar
  2. 2.
    Laurent C, Delas A, Gaulard P, Haioun C, Moreau A, Xerri L, Traverse-Glehen A, Rousset T, Quintin-Roue I, Petrella T, Emile JF, Amara N, Rochaix P, Chenard-Neu MP, Tasei AM, Menet E, Chomarat H, Costes V, Andrac-Meyer L, Michiels JF, Chassagne-Clement C, de Leval L, Brousset P, Delsol G, Lamant L (2016) Breast implant-associated anaplastic large cell lymphoma: two distinct clinicopathological variants with different outcomes. Ann Oncol 27(2):306–314.  https://doi.org/10.1093/annonc/mdv575 CrossRefPubMedGoogle Scholar
  3. 3.
    Miranda RN, Aladily TN, Prince HM, Kanagal-Shamanna R, de Jong D, Fayad LE, Amin MB, Haideri N, Bhagat G, Brooks GS, Shifrin DA, O'Malley DP, Cheah CY, Bacchi CE, Gualco G, Li S, Keech JA Jr, Hochberg EP, Carty MJ, Hanson SE, Mustafa E, Sanchez S, Manning JT Jr, Xu-Monette ZY, Miranda AR, Fox P, Bassett RL, Castillo JJ, Beltran BE, de Boer JP, Chakhachiro Z, Ye D, Clark D, Young KH, Medeiros LJ (2014) Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol 32(2):114–120.  https://doi.org/10.1200/JCO.2013.52.7911 CrossRefPubMedGoogle Scholar
  4. 4.
    Lechner MG, Lade S, Liebertz DJ, Prince HM, Brody GS, Webster HR, Epstein AL (2011) Breast implant-associated, ALK-negative, T-cell, anaplastic, large-cell lymphoma: establishment and characterization of a model cell line (TLBR-1) for this newly emerging clinical entity. Cancer 117(7):1478–1489.  https://doi.org/10.1002/cncr.25654 CrossRefPubMedGoogle Scholar
  5. 5.
    Blombery P, Thompson ER, Jones K, Arnau GM, Lade S, Markham JF, Li J, Deva A, Johnstone RW, Khot A, Prince HM, Westerman D (2016) Whole exome sequencing reveals activating JAK1 and STAT3 mutations in breast implant-associated anaplastic large cell lymphoma anaplastic large cell lymphoma. Haematologica 101(9):e387–e390.  https://doi.org/10.3324/haematol.2016.146118 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lechner MG, Megiel C, Church CH, Angell TE, Russell SM, Sevell RB, Jang JK, Brody GS, Epstein AL (2012) Survival signals and targets for therapy in breast implant-associated ALK--anaplastic large cell lymphoma. Clin Cancer Res 18(17):4549–4559.  https://doi.org/10.1158/1078-0432.CCR-12-0101 CrossRefPubMedGoogle Scholar
  7. 7.
    Di Napoli A, Jain P, Duranti E, Margolskee E, Arancio W, Facchetti F, Alobeid B, Santanelli di Pompeo F, Mansukhani M, Bhagat G (2016) Targeted next generation sequencing of breast implant-associated anaplastic large cell lymphoma reveals mutations in JAK/STAT signalling pathway genes, TP53 and DNMT3A. Br J Haematol 180:741–744.  https://doi.org/10.1111/bjh.14431 CrossRefPubMedGoogle Scholar
  8. 8.
    Waldmann TA, Chen J (2017) Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol 35:533–550.  https://doi.org/10.1146/annurev-immunol-110416-120628 CrossRefPubMedGoogle Scholar
  9. 9.
    Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N, Di Giacomo F, Spaccarotella E, Barbarossa L, Ercole E, Todaro M, Boi M, Acquaviva A, Ficarra E, Novero D, Rinaldi A, Tousseyn T, Rosenwald A, Kenner L, Cerroni L, Tzankov A, Ponzoni M, Paulli M, Weisenburger D, Chan WC, Iqbal J, Piris MA, Zamo A, Ciardullo C, Rossi D, Gaidano G, Pileri S, Tiacci E, Falini B, Shultz LD, Mevellec L, Vialard JE, Piva R, Bertoni F, Rabadan R, Inghirami G, European T-Cell Lymphoma Study Group, T-Cell Project: Prospective Collection of Data in Patients with Peripheral T-Cell Lymphoma and the AIRC 5xMille Consortium “Genetics-Driven Targeted Management of Lymphoid Malignancies” (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27(4):516–532.  https://doi.org/10.1016/j.ccell.2015.03.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, Lagstrom S, Clemente MJ, Olson T, Jalkanen SE, Majumder MM, Almusa H, Edgren H, Lepisto M, Mattila P, Guinta K, Koistinen P, Kuittinen T, Penttinen K, Parsons A, Knowles J, Saarela J, Wennerberg K, Kallioniemi O, Porkka K, Loughran TP Jr, Heckman CA, Maciejewski JP, Mustjoki S (2012) Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366(20):1905–1913.  https://doi.org/10.1056/NEJMoa1114885 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bellanger D, Jacquemin V, Chopin M, Pierron G, Bernard OA, Ghysdael J, Stern MH (2014) Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia. Leukemia 28(2):417–419.  https://doi.org/10.1038/leu.2013.271 CrossRefPubMedGoogle Scholar
  12. 12.
    Kucuk C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, Lack N, Alkan C, Williams JC, Avery KN, Kavak P, Scuto A, Sen E, Gaulard P, Staudt L, Iqbal J, Zhang W, Cornish A, Gong Q, Yang Q, Sun H, d'Amore F, Leppa S, Liu W, Fu K, de Leval L, McKeithan T, Chan WC (2015) Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun 6:6025.  https://doi.org/10.1038/ncomms7025 CrossRefPubMedGoogle Scholar
  13. 13.
    Roberti A, Dobay MP, Bisig B, Vallois D, Boechat C, Lanitis E, Bouchindhomme B, Parrens MC, Bossard C, Quintanilla-Martinez L, Missiaglia E, Gaulard P, de Leval L (2016) Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun 7:12602.  https://doi.org/10.1038/ncomms12602 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McKinney M, Moffitt AB, Gaulard P, Travert M, De Leval L, Nicolae A, Raffeld M, Jaffe ES, Pittaluga S, Xi L, Heavican T, Iqbal J, Belhadj K, Delfau-Larue MH, Fataccioli V, Czader MB, Lossos IS, Chapman-Fredricks JR, Richards KL, Fedoriw Y, Ondrejka SL, Hsi ED, Low L, Weisenburger D, Chan WC, Mehta-Shah N, Horwitz S, Bernal-Mizrachi L, Flowers CR, Beaven AW, Parihar M, Baseggio L, Parrens M, Moreau A, Sujobert P, Pilichowska M, Evens AM, Chadburn A, Au-Yeung RK, Srivastava G, Choi WW, Goodlad JR, Aurer I, Basic-Kinda S, Gascoyne RD, Davis NS, Li G, Zhang J, Rajagopalan D, Reddy A, Love C, Levy S, Zhuang Y, Datta J, Dunson DB, Dave SS (2017) The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov 7(4):369–379.  https://doi.org/10.1158/2159-8290.CD-16-0330 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ren Y, Zhang Y, Liu RZ, Fenstermacher DA, Wright KL, Teer JK, Wu J (2013) JAK1 truncating mutations in gynecologic cancer define new role of cancer-associated protein tyrosine kinase aberrations. Sci Rep 3:3042.  https://doi.org/10.1038/srep03042 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PathologyLausanne University Hospital (CHUV)LausanneSwitzerland
  2. 2.Department of HaematologyInstitut Jules BordetBrusselsBelgium
  3. 3.Department of PathologyInstitut Jules BordetBrusselsBelgium

Personalised recommendations