Variable X-chromosome inactivation and enlargement of pericentral glutamine synthetase zones in the liver of heterozygous females with OTC deficiency

  • Dita Musalkova
  • Eva Sticova
  • Martin Reboun
  • Jitka Sokolova
  • Jakub Krijt
  • Jitka Honzikova
  • Jiri Gurka
  • Magdalena Neroldova
  • Tomas Honzik
  • Jiri Zeman
  • Milan Jirsa
  • Lenka Dvorakova
  • Martin Hrebicek
Original Article
  • 47 Downloads

Abstract

Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder that causes recurrent and life-threatening episodes of hyperammonemia. The clinical picture in heterozygous females is highly diverse and derives from the genotype and the degree of inactivation of the mutated X chromosome in hepatocytes. Here, we describe molecular genetic, biochemical, and histopathological findings in the livers explanted from two female patients with late-onset OTC deficiency. Analysis of X-inactivation ratios by DNA methylation-based assays showed remarkable intra-organ variation ranging from 46:54 to 82:18 (average 70:30, n = 37), in favor of the active X chromosome carrying the mutation c.583G>C (p.G195R), in the first patient and from 75:25 to 90:10 (average 82:18, n = 20) in favor of the active X chromosome carrying the splicing mutation c.663+1G>A in the second patient. The X-inactivation ratios in liver samples correlated highly with the proportions of OTC-positive hepatocytes calculated from high-resolution image analyses of the immunohistochemically detected OTC in frozen sections that was performed on total area > 5 cm2. X-inactivation ratios in blood in both female patients corresponded to the lower limit of the liver values. Our data indicate that the proportion of about 20–30% of hepatocytes expressing the functional OTC protein is not sufficient to maintain metabolic stability. X-inactivation ratios assessed in liver biopsies taken from heterozygous females with X-linked disorders should not be considered representative of the whole liver.

Keywords

Ornithine transcarbamylase X chromosome inactivation Glycogen storage Liver Liver zonation Glutamine synthetase 

Notes

Acknowledgements

The authors would like to thank the patients and their families. We acknowledge the help and advice provided by Marketa Novakova, Michaela Hnizdova Bouckova, Michaela Fialova, Gabriela Storkanova, Ondrej Luksan, Karolina Peskova, and particularly, by Lenka Piherova and Jakub Sikora.

Compliance with ethical standards

The study was approved by the local ethics committee and conducted in agreement with institutional guidelines. Written informed consent was obtained from all adult study participants. On behalf of the patient written informed consent was obtained from her parents.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

428_2018_2345_MOESM1_ESM.pdf (169 kb)
ESM 1 (PDF 168 kb)
428_2018_2345_MOESM2_ESM.pdf (704 kb)
ESM 2 (PDF 704 kb)

References

  1. 1.
    Yu W, Lin Y, Yao J, Huang W, Lei Q, Xiong Y, Zhao S, Guan KL (2009) Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. J Biol Chem 274:13669–13675.  https://doi.org/10.1074/jbc.M901921200 CrossRefGoogle Scholar
  2. 2.
    Hallows WC, Yu W, Smith BC, Devires MK, Ellinger JJ, Someya S, Shortreed MR, Prolla T, Markley JL, Smith LM, Zhao S, Guan KL, Denu JM (2011) Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell 41:139–149.  https://doi.org/10.1016/j.molcel.2011.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570.  https://doi.org/10.1016/j.cell.2009.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gebhardt R, Matz-Soja M (2014) Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol 20:8491–8504.  https://doi.org/10.3748/wjg.v20.i26.8491 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bahar Halpern K, Shenhav R, Matcovitch-Natan O et al (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356.  https://doi.org/10.1038/nature21065 CrossRefGoogle Scholar
  6. 6.
    Torre C, Perret C, Colnot S (2010) Molecular determinants of liver zonation. Prog Mol Biol Transl Sci 97:127–150.  https://doi.org/10.1016/B978-0-12-385233-5.00005-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Cavicchi C, Donati M, Parini R et al (2014) Sudden unexpected fatal encephalopathy in adults with OTC gene mutations—clues for early diagnosis and timely treatment. Orphanet J Rare Dis 9:105.  https://doi.org/10.1186/s13023-014-0105-9 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yorifuji T, Muroi J, Uematsu A, Tanaka K, Kiwaki K, Endo F, Matsuda I, Nagasaka H, Furusho K (1998) X-inactivation pattern in the liver of a manifesting female with ornithine transcarbamylase (OTC) deficiency. Clin Genet 54:349–353CrossRefPubMedGoogle Scholar
  9. 9.
    Lichter-Konecki U, Caldovic L, Morizono H, et al (2016) Ornithine transcarbamylase deficiency. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. Avalaible from: https://www.ncbi.nlm.nih.gov/books/NBK154378/
  10. 10.
    Storkanova G, Vlaskova H, Chuzhanova N, Zeman J, Stranecky V, Majer F, Peskova K, Luksan O, Jirsa M, Hrebicek M, Dvorakova L (2013) Ornithine carbamoyltransferase deficiency: molecular characterization of 29 families. Clin Genet 84:552–559.  https://doi.org/10.1111/cge.12085 CrossRefPubMedGoogle Scholar
  11. 11.
    Musalkova D, Minks J, Storkanova G, Dvorakova L, Hrebicek M (2015) Identification of novel informative loci for DNA-based X-inactivation analysis. Blood Cells Mol Dis 54:210–216.  https://doi.org/10.1016/j.bcmd.2014.10.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36.  https://doi.org/10.1186/gb-2013-14-4-r36 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993.  https://doi.org/10.1093/bioinformatics/btr509 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tuchman M, Tsai MY, Holzkneccht RA, Brusilow SW (1989) Carbamyl phosphate synthetase and ornithine transcarbamylase activities in enzyme-deficient human liver measured by radiochromatography and correlated with outcome. Pediatr Res 26:77–82.  https://doi.org/10.1203/00006450-198907000-00021 CrossRefPubMedGoogle Scholar
  15. 15.
    Hers HG (1964) Glycogen storage disease. Adv Metab Disord 13:1–44PubMedGoogle Scholar
  16. 16.
    Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:1229–1239PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kogo T, Satoh Y, Kanazawa M, Yamamoto S, Takayanagi M, Ohtake A, Mori M, Niimi H (1998) Expression analysis of two mutant human ornithine transcarbamylases in COS-7 cells. J Hum Genet 43:54–58.  https://doi.org/10.1007/s100380050037 CrossRefPubMedGoogle Scholar
  18. 18.
    Choi JH, Lee BH, Kim JH, Kim GH, Kim YM, Cho J, Cheon CK, Ko JM, Lee JH, Yoo HW (2015) Clinical outcomes and the mutation spectrum of the OTC gene in patients with ornithine transcarbamylase deficiency. J Hum Genet 60:501–507.  https://doi.org/10.1038/jhg.2015.54 CrossRefPubMedGoogle Scholar
  19. 19.
    Kim GH, Choi JH, Lee HH, Park S, Kim SS, Yoo HW (2006) Identification of novel mutations in the human ornithine transcarbamylase (OTC) gene of Korean patients with OTC deficiency and transient expression of the mutant proteins in vitro. Hum Mutat 27:1159.  https://doi.org/10.1002/humu.9465 CrossRefPubMedGoogle Scholar
  20. 20.
    Tuchman M, Plante RJ, McCann MT, Qureshi AA (1994) Seven new mutations in the human ornithine transcarbamylase gene. Hum Mutat 4:57–60.  https://doi.org/10.1002/humu.1380040109 CrossRefPubMedGoogle Scholar
  21. 21.
    Rahayatri T, Uchida H, Sasaki K et al (2017) Hyperammonemia in ornithine transcarbamylase-deficient recipients following living donor liver transplantation from heterozygous carrier donors. Pediatr Transplant 21:e12848.  https://doi.org/10.1111/petr.12848 CrossRefGoogle Scholar
  22. 22.
    De Hoon B, Monkhorst K, Riegman P, Laven JS, Gribnau J (2015) Buccal swab as a reliable predictor for X inactivation ratio in inaccessible tissues. J Med Genet 52:784–790.  https://doi.org/10.1136/jmedgenet-2015-103194 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wakiya T, Sanada Y, Urahashi T, Ihara Y, Yamada N, Okada N, Egami S, Sakamoto K, Murayama K, Hakamada K, Yasuda Y, Mizuta K (2012) Living donor liver transplantation from an asymptomatic mother who was a carrier for ornithine transcarbamylase deficiency. Pediatr Transplant 16:E196–E200.  https://doi.org/10.1111/j.1399-3046.2012.01716.x CrossRefPubMedGoogle Scholar
  24. 24.
    Wakiya T, Sanada Y, Urahashi T, Ihara Y, Yamada N, Okada N, Ushijima K, Otomo S, Sakamoto K, Murayama K, Takayanagi M, Hakamada K, Yasuda Y, Mizuta K (2012) Impact of enzyme activity assay on indication in liver transplantation for ornithine transcarbamylase deficiency. Mol Genet Metab 105:404–407.  https://doi.org/10.1016/j.ymgme.2011.12.019 CrossRefPubMedGoogle Scholar
  25. 25.
    Badizadegan K, Perez-Atayde AR (1997) Focal glycogenosis of the liver in disorders of ureagenesis: its occurrence and diagnostic significance. Hepatology 26:365–373.  https://doi.org/10.1002/hep.510260217 CrossRefPubMedGoogle Scholar
  26. 26.
    Yaplito-Lee J, Chow CW, Boneh A (2013) Histopathological findings in livers of patients with urea cycle disorders. Mol Genet Metab 108:161–165.  https://doi.org/10.1016/j.ymgme.2013.01.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Wu H, Luo J, Yu H, Rattner A, Mo A, Wang Y, Smallwood PM, Erlanger B, Wheelan SJ, Nathans J (2014) Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81:103–119.  https://doi.org/10.1016/j.neuron.2013.10.051 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hedberg Oldfors C, Máthé G, Thomson K, Tulinius M, Karason K, Östman-Smith I, Oldfors A (2015) Early onset cardiomyopathy in females with Danon disease. Neuromuscul Disord 25:493–501.  https://doi.org/10.1016/j.nmd.2015.03.005 CrossRefPubMedGoogle Scholar
  29. 29.
    Miles L, Heubi JE, Bove KE (2005) Hepatocyte glycogen accumulation in patients undergoing dietary management of urea cycle defects mimics storage disease. J Pediatr Gastroenterol Nutr 40:471–476CrossRefPubMedGoogle Scholar
  30. 30.
    Carpentieri D, Barnhart MF, Aleck K, Miloh T, deMello D (2015) Lysinuric protein intolerance in a family of Mexican ancestry with a novel SLC7A7 gene deletion. Case report and review of the literature. Mol Genet Metab Rep 2:47–50.  https://doi.org/10.1016/j.ymgmr.2014.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Burrage L, Madan S, Li X, Jiang M, Cela R, Finegold M, Nagamani S, Bali D, Lee B. Argininosuccinate lyase deficiency: a hepatic glycogen storage disorder? Poster presented at ASHG 2016 Meeting. 2016 October 18–22; Vancouver, Canada. Retrieved from http://www.ashg.org/2016meeting/listing/PosterSessions.shtml, 27th March 2017
  32. 32.
    Shiojiri N, Imai H, Goto S, Ohta T, Ogawa K, Mori M (1997) Mosaic pattern of ornithine transcarbamylase expression in spfash mouse liver. Am J Pathol 151:413–421PubMedPubMedCentralGoogle Scholar
  33. 33.
    Matsuda I, Tanase S (1997) The ornithine transcarbamylase (OTC) gene: mutations in 50 Japanese families with OTC deficiency. Am J Med Genet 71:378–383CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dita Musalkova
    • 1
  • Eva Sticova
    • 2
  • Martin Reboun
    • 1
  • Jitka Sokolova
    • 1
  • Jakub Krijt
    • 1
  • Jitka Honzikova
    • 1
  • Jiri Gurka
    • 1
    • 3
  • Magdalena Neroldova
    • 4
  • Tomas Honzik
    • 5
  • Jiri Zeman
    • 5
  • Milan Jirsa
    • 4
  • Lenka Dvorakova
    • 1
  • Martin Hrebicek
    • 1
  1. 1.Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePrague 2Czech Republic
  2. 2.Department of Clinical and Transplant PathologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
  3. 3.Institute of Histology and Embryology, First Faculty of MedicineCharles UniversityPragueCzech Republic
  4. 4.Laboratory of Experimental HepatologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
  5. 5.Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic

Personalised recommendations