Skip to main content
Log in

LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Cofilin phospho-regulation is important for actin filament turnover and is implicated in cancer. Phosphorylation of cofilin is mediated by LIM kinases (LIMKs) and dephosphorylation by Slingshot phosphatases (SSH). LIMKs and SSH promote cancer cell invasion and metastasis and represent novel anti-cancer targets. However, little is known regarding LIMK/cofilin and SSH in human colorectal cancer (CRC). In this study, we aimed to address their expression and significance in human CRC. We evaluated expression of non-phosphorylated (active) and phosphorylated cofilin, LIMK1, LIMK2, and SSH1 by immunohistochemistry in 143 human CRC samples in relation to clinicopathologic parameters, response of metastatic disease to chemotherapy, and epithelial-mesenchymal transition (EMT) markers β-catenin, E-cadherin, and ZEB. We show that active cofilin, LIMK1, LIMK2, and SSH1 are overexpressed in human CRC and are associated with tumor progression parameters. SSH1 is an independent predictor of lymph node metastasis by multivariate analysis. LIMK1 and SSH1 expression is also higher in non-responders to chemotherapy, and SSH1 is shown by multivariate analysis to independently predict response of metastatic disease to chemotherapy. Active cofilin, LIMK1, LIMK2, and SSH1 also correlated with the EMT markers examined. In addition, immunofluorescence analysis showed increased expression of active cofilin, LIMK1, LIMK2, and SSH1 in HT29 colon cancer cells resistant to 5-fluorouracil compared to parental HT29 cells. Our results suggest that F-actin regulators LIMK/cofilin pathway and SSH1 are associated with CRC progression and chemoresistance representing promising tumor biomarkers and therapeutic targets in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773(5):642–652. https://doi.org/10.1016/j.bbamcr.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  2. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473. https://doi.org/10.1152/physrev.00026.2002

    Article  PubMed  Google Scholar 

  3. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. https://doi.org/10.1038/nrc822

    Article  PubMed  CAS  Google Scholar 

  4. Bamburg JR, Wiggan OP (2002) ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12(12):598–605. https://doi.org/10.1016/S0962-8924(02)02404-2

    Article  PubMed  CAS  Google Scholar 

  5. Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469. https://doi.org/10.1016/j.cellsig.2012.11.001

    Article  PubMed  CAS  Google Scholar 

  6. Shishkin S, Eremina L, Pashintseva N, Kovalev L, Kovaleva M (2016) Cofilin-1 and other ADF/Cofilin superfamily members in human malignant cells. Int J Mol Sci 18:10. https://doi.org/10.3390/ijms18010010

    Article  PubMed Central  CAS  Google Scholar 

  7. Arber S, Barbayannis FA, Hanser H Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393(6687):805–809. https://doi.org/10.1038/31729

    Article  PubMed  CAS  Google Scholar 

  8. Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechère L (2017) LIM kinases: cofilin and beyond. Oncotarget 8:41749–41763. https://doi.org/10.18632/oncotarget.16978

    Article  PubMed  PubMed Central  Google Scholar 

  9. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246

    Article  PubMed  CAS  Google Scholar 

  10. Huang TY, Der Mardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18(1):26–31. https://doi.org/10.1016/j.ceb.2005.11.005

    Article  PubMed  CAS  Google Scholar 

  11. Nishita M, Tomizawa C, Yamamoto M, Horita Y, Ohashi K, Mizuno K (2002) Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J Cell Biol 171(2):349–359. https://doi.org/10.1083/jcb.200504029

    Article  CAS  Google Scholar 

  12. Horita Y, Ohashi K, Mukai M, Inoue M, Mizuno K (2008) Suppression of the invasive capacity of rat ascites hepatoma cells by knockdown of Slingshot or LIM kinase. J Biol Chem 283(10):6013–6021. https://doi.org/10.1074/jbc.M706538200

    Article  PubMed  CAS  Google Scholar 

  13. Yoshioka K, Foletta V, Bernard O, Itoh K (2003) A role for LIM kinase in cancer invasion. Proc Natl Acad Sci U S A 100(12):7247–7252. https://doi.org/10.1073/pnas.1232344100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Davila M, Frost AR, Grizzle WE, Chakrabarti R (2003) LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem 278(38):36868–36875. https://doi.org/10.1074/jbc.M306196200

    Article  PubMed  CAS  Google Scholar 

  15. Suyama E, Wadhwa R, Kawasaki H, Yaguchi T, Kaul SC, Nakajima M, Taira K (2004) LIM kinase-2 targeting as a possible anti-metastasis therapy. J Gene Med 6(3):357–363. https://doi.org/10.1002/jgm.491

    Article  PubMed  CAS  Google Scholar 

  16. Vlecken DH, Bagowski CP (2009) LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish 6(4):433–439. https://doi.org/10.1089/zeb.2009.0602

    Article  PubMed  CAS  Google Scholar 

  17. McConnell BV, Koto K, Gutierrez-Hartmann A (2011) Nuclear and cytoplasmic LIMK1 enhances human breast cancer progression. Mol Cancer 10(1):75. https://doi.org/10.1186/1476-4598-10-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Su J, Zhou Y, Pan Z, Shi L, Yang J, Liao A, Liao Q, Su Q (2017) Downregulation of LIMK1-ADF/cofilin by DADS inhibits the migration and invasion of colon cancer. Sci Rep 7:45624. https://doi.org/10.1038/srep45624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lourenço FC, Munro J, Brown J, Cordero J, Stefanatos R, Strathdee K, Orange C, Feller SM, Sansom OJ, Vidal M, Murray GI, Olson MF (2014) Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation. Gut 63(3):480–493. https://doi.org/10.1136/gutjnl-2012-303883

    Article  PubMed  CAS  Google Scholar 

  20. Wang Y, Kuramitsu Y, Kitagawa T, Baron B, Yoshino S, Maehara S, Maehara Y, Oka M, Nakamura K (2015) Cofilin-phosphatase slingshot-1L (SSH1L) is over-expressed in pancreatic cancer (PC) and contributes to tumor cell migration. Cancer Lett 360(2):171–176. https://doi.org/10.1016/j.canlet.2015.02.015

    Article  PubMed  CAS  Google Scholar 

  21. Bravou V, Antonacopoulou A, Papanikolaou S, Nikou S, Lilis I, Giannopoulou E, Kalofonos HP (2015) Focal adhesion proteins α- and β-parvin are overexpressed in human colorectal cancer and correlate with tumor progression. Cancer Investig 33(8):387–397. https://doi.org/10.3109/07357907.2015.1047508

    Article  CAS  Google Scholar 

  22. Bravou V, Klironomos G, Papadaki E, Taraviras S, Varakis J (2006) ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 208(1):91–99. https://doi.org/10.1002/path.1860

    Article  PubMed  CAS  Google Scholar 

  23. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare E, Madera M, Gress DM, Meyer LR (2017) AJCC cancer staging manual, 8th edn. Springer, New York. https://doi.org/10.1007/978-3-319-40618-3

    Book  Google Scholar 

  24. Bosman FT, Carneiro F, Hruban RH, Theise ND (2010) World Health organization classification of tumours of the digestive system, 4th edn. IARC Press, Lyon

    Google Scholar 

  25. Karavias D, Maroulis I, Papadaki H, Gogos C, Kakkos S, Karavias D, Bravou V (2016) Overexpression of CDT1 is a predictor of poor survival in patients with hepatocellular carcinoma. J Gastrointest Surg 20(3):568–579. https://doi.org/10.1007/s11605-015-2960-7

    Article  PubMed  Google Scholar 

  26. Castro MA, Dal-Pizzol F, Zdanov S, Soares M, Müller CB, Lopes FM, Zanotto-Filho A, da Cruz Fernandes M, Moreira JC, Shacter E, Klamt F (2010) CFL1 expression levels as a prognostic and drug resistance marker in non small cell lung cancer. Cancer 116(15):3645–3655. https://doi.org/10.1002/cncr.25125

    Article  PubMed  CAS  Google Scholar 

  27. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  PubMed  CAS  Google Scholar 

  28. Coley HM (2004) Development of drug-resistant models. In: Langdom SP (ed) Cancer cell culture, methods and protocols. Humana Press Inc., Totowa, pp 267–273

    Google Scholar 

  29. Cohen J (1969) Statistical power analysis for the behavioural sciences. Academic Press, New York

    Google Scholar 

  30. Prudent R, Vassal-Stermann E, Nguyen CH, Pillet C, Martinez A, Prunier C, Barette C, Soleilhac E, Filhol O, Beghin A, Valdameri G, Honoré S, Aci-Sèche S, Grierson D, Antonipillai J, Li R, Di Pietro A, Dumontet C, Braguer D, Florent JC, Knapp S, Bernard O, Lafanechère L (2012) Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth. Cancer Res 72(17):4429–4439. https://doi.org/10.1158/0008-5472.CAN-11-3342

    Article  PubMed  CAS  Google Scholar 

  31. Prunier C, Josserand V, Vollaire J, Beerling E, Petropoulos C, Destaing O, Montemagno C, Hurbin A, Prudent R, de Koning L, Kapur R, Cohen PA, Albiges-Rizo C, Coll JL, van Rheenen J, Billaud M, Lafanechère L (2016) LIM kinase inhibitor Pyr1 reduces the growth and metastatic load of breast cancers. Cancer Res 76(12):3541–3552. https://doi.org/10.1158/0008-5472.CAN-15-1864

    Article  PubMed  CAS  Google Scholar 

  32. Mardilovich K, Baugh M, Crighton D, Kowalczyk D, Gabrielsen M, Munro J, Croft DR, Lourenco F, James D, Kalna G, McGarry L, Rath O, Shanks E, Garnett MJ, McDermott U, Brookfield J, Charles M, Hammonds T, Olson MF (2015) LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation. Oncotarget 6(36):38469–38486. https://doi.org/10.18632/oncotarget.6288

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee SY, Kim W, Lee YG, Kang HJ, Lee SH, Park SY, Min JK, Lee SR, Chung SJ (2017) Identification of sennoside A as a novel inhibitor of the slingshot (SSH) family proteins related to cancer metastasis. Pharmacol Res 119:422–430. https://doi.org/10.1016/j.phrs.2017.03.003

    Article  PubMed  CAS  Google Scholar 

  34. Lu LI, Fu NI, Luo XU, Li XY, Li XP (2015) Overexpression of cofilin 1 in prostate cancer and the corresponding clinical implications. Oncol Lett 9(6):2757–2761. https://doi.org/10.3892/ol.2015.3133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nishimura S, Tsuda H, Kataoka F, Arao T, Nomura H, Chiyoda T, Susumu N, Nishio K, Aoki D (2011) Overexpression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Hum Pathol 42(4):516–521. https://doi.org/10.1016/j.humpath.2010.07.019

    Article  PubMed  CAS  Google Scholar 

  36. Peng XCL, Gong FM, Zhao YW, Zhou LX, Xie YW, Liao HL, Lin HJ, Li ZY, Tang MH, Tong AP (2011) Comparative proteomic approach identifies PKM2 and cofilin-1 as potential diagnostic, prognostic and therapeutic targets for pulmonary adenocarcinoma. PLoS One 6(11):e27309. https://doi.org/10.1371/journal.pone.0027309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Estornes Y, Gay F, Gevrey JC, Navoizat S, Nejjari M, Scoazec JY, Chayvialle JA, Saurin JC, Abello J (2007) Differential involvement of destrin and cofilin-1 in the control of invasive properties of Isreco1 human colon cancer cells. Int J Cancer 121(10):2162–2171. https://doi.org/10.1002/ijc.22911

    Article  PubMed  CAS  Google Scholar 

  38. Nowak D, Mazur AJ, Popow-Woźniak A, Radwańska A, Mannherz HG, Malicka-Błaszkiewicz M (2010) Subcellular distribution and expression of cofilin and ezrin in human colon adenocarcinoma cell lines with different metastatic potential. Eur J Histochem 54:e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Popow-Woźniak A, Mazur AJ, Mannherz HG, Malicka-Błaszkiewicz M, Nowak D (2012) Cofilin overexpression affects actin cytoskeleton organization and migration of human colon adenocarcinoma cells. Histochem Cell Biol 138(5):725–736. https://doi.org/10.1007/s00418-012-0988-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Davila M, Jhala D, Ghosh D, Grizzle WE, Chakrabarti R (2007) Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer 6(1):40. https://doi.org/10.1186/1476-4598-6-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Johnson EO, Chang KH, Ghosh S, Venkatesh C, Giger K, Low PS, Shah K (2012) LIMK2 is a crucial regulator and effector of Aurora-A-kinase-mediated malignancy. J Cell Sci 125(5):1204–1216. https://doi.org/10.1242/jcs.092304

    Article  PubMed  CAS  Google Scholar 

  42. Chen C, Maimaiti Y, Zhijun S, Zeming L, Yawen G, Pan Y, Tao H (2017) Slingshot-1L, a cofilin phosphatase, induces primary breast cancer metastasis. Oncotarget 8:66195–66203. https://doi.org/10.18632/oncotarget.19855

    Article  PubMed  PubMed Central  Google Scholar 

  43. Becker M, de Bastiani MA, Muller CB, Markoski MM, Castro MA, Klamt F (2014) High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas. Tumour Biol 35(2):1233–1238. https://doi.org/10.1007/s13277-013-1164-6

    Article  PubMed  CAS  Google Scholar 

  44. Yan XDL, Pan LY, Yuan Y, Lang JH, Mao N (2007) Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. J Proteome Res 6(2):772–780. https://doi.org/10.1021/pr060402r

    Article  PubMed  CAS  Google Scholar 

  45. Prunier C, Kapur R, Lafanechère L (2016) Targeting LIM kinases in taxane resistant tumors. Oncotarget 7(32):50816–50817. https://doi.org/10.18632/oncotarget.10816

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen Q, Jiao D, Hu H, Song J, Yan J, Wu L, Xu LQ (2013) Downregulation of LIMK1 level inhibits migration of lung cancer cells and enhances sensitivity to chemotherapy drugs. Oncol Res 20(11):491–498. https://doi.org/10.3727/096504013X13657689382699

    Article  PubMed  CAS  Google Scholar 

  47. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–4751. https://doi.org/10.1038/onc.2010.215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shankar J, Nabi IR (2015) Correction: Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS One 10(7):e0132759. https://doi.org/10.1371/journal.pone.0132759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Haibo W, Lide T, Feng J, Hao G, Xiaojun D, Tengyang N, Jun F, Yanbing D, Weiming X, Yayun Q, Yanqing L (2017) Cofilin 1 induces the epithelial-mesenchymal transition of gastric cancer cells by promoting cytoskeletal rearrangement. Oncotarget. https://doi.org/10.18632/oncotarget.16608

  50. Su B, Su J, Zeng Y, Liu F, Xia H, Ma YH, Zhou ZG, Zhang S, Yang BM, Wu YH, Zeng X, Ai XH, Ling H, Jiang H, Su Q (2016) Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer. Oncotarget 7(9):10498–10512. https://doi.org/10.18632/oncotarget.7252

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim AY, Kwak JH, Je NK, Lee YH, Jung YS (2015) Epithelial-mesenchymal transition is associated with acquired resistance to 5-fluorocuracil in HT-29 colon cancer cells. Toxicol Res 31(2):151–156. https://doi.org/10.5487/TR.2015.31.2.151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G, Samuel S, Kim MP, Lim SJ, Ellis LM (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69(5):1951–1957. https://doi.org/10.1158/0008-5472.CAN-08-2023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Bravou.

Ethics declarations

Human tissue samples anonymously used in the study were paraffin blocks (redundant tissue) for the archives of the Department of Pathology. The study was performed in compliance with the Declaration of Helsinki and was approved by the Committee on Research and Ethics and the Scientific Committee of the University Hospital of Patras, Greece.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggelou, H., Chadla, P., Nikou, S. et al. LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance. Virchows Arch 472, 727–737 (2018). https://doi.org/10.1007/s00428-018-2298-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-018-2298-0

Keywords

Navigation