Advertisement

Virchows Archiv

, Volume 471, Issue 2, pp 141–146 | Cite as

Preparing pathology for precision medicine: challenges and opportunities

  • Karen L KaulEmail author
Original Article

Introduction

The field of pathology offers the opportunity to understand the science of disease, to lead innovation and quality efforts, and to have enormous impact on the lives of patients every day. Patients benefit from laboratory medicine throughout their lives, and our testing services and procedures touch every patient in our health care system. Lab results constitute the majority of data in a patient’s electronic medical record, and our procedures dictate the majority of downstream medical decisions for patients [1, 2]. Medical professionals in clinical laboratories provide accurate and timely information to ensure that patients get the most appropriate and efficient course of care, and hence, the best outcome.

Medicine, and the field of pathology, are rapidly changing. The human genome has been sequenced, yielding an explosion of knowledge applicable to patient care; this is precision medicine, and we need to continue to innovate and integrate novel diagnostic tools and...

Keywords

Genomic pathology Next-generation sequencing Personalized medicine DNA analysis Somatic mutations 

References

  1. 1.
    Hallworth MJ (2011) The ‘70% claim’: what is the evidence base? Ann Clin Biochem 48:487–488CrossRefPubMedGoogle Scholar
  2. 2.
    Badrich T (2013) Evidence-based laboratory medicine. Clin Biochem Rev 34:43–46Google Scholar
  3. 3.
    Vogelstein B et al (2013) Cancer genome landscapes. Science 339(6127):1546–1558CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    National Center for Biotechnology Information (2014) Gene: KMT2D lysine (K)-specific methyltransferase 2D [Homo sapiens (human)]. Gene database. Available from: http://www.ncbi.nlm.nih.gov/gene/8085.
  5. 5.
    Louis DN, Perry A, Reifenberger G, von Deimling F-BD, Cavenee WK, Ohgaki H, Weistler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefPubMedGoogle Scholar
  6. 6.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390. doi: 10.1182/blood-2016-01-643569 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang HL, Lopategui J, Amin MB et al (2010) KRAS mutation testing in human cancers: the pathologist’s role in the era of personalized medicine. Adv Anat Pathol 17:23–32PubMedGoogle Scholar
  8. 8.
    Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Côté JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995. doi: 10.1158/0008-5472.CAN-06-0191. PMID16618717CrossRefPubMedGoogle Scholar
  9. 9.
    Di Fiore F, Le Pessot F, Lamy A, et al. KRAS mutation is highly predictive of cetuximab resistance in metastatic colorectal cancer. J Clin Oncol, 2007 ASCO Annual Meeting Proc.; vol 25, No 18S (June 20 Supplement), p 2007:10502Google Scholar
  10. 10.
    Kamel-Reid S, Zhang T, Persons DL, Molecular Oncology Resource Committee of the College of American Pathologists et al (2012) Validation of KRAS testing for anti-EGFR therapeutic decisions for patients with metastatic colorectal carcinoma. Arch Pathol Lab Med 136:26–32. doi: 10.5858/arpa.2011-0220-OA http://www.ncbi.nlm.nih.gov/pubmed/22208484 CrossRefPubMedGoogle Scholar
  11. 11.
    Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2095CrossRefPubMedGoogle Scholar
  12. 12.
    National Comprehensive Cancer Network Guidelines on Colon and Rectal Cancers. NCCN, PA, USA (2008). Practice guidelines established for KRAS mutation testing in colorectal cancerGoogle Scholar
  13. 13.
    Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (2013) Recommendations from the EGAPP working group: can testing of tumor tissue for mutations in EGFR pathway downstream effector genes in patients with metastatic colorectal cancer improve health outcomes by guiding decisions regarding anti-EGFR therapy? Genet Med 15(7):517–527. doi: 10.1038/gim.2012.184 CrossRefGoogle Scholar
  14. 14.
    Allegra CJ, Rumble RB, Hamilton SR, Roach N, Hantel, A, Schilsky RL (2015) Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti–epidermal growth factor receptor monoclonal antibody therapy: ASCO Provisional Clinical Opinion Update 2015. doi: 10.1200/JCO.2015.63.9674
  15. 15.
    Tang W, Hu Z, Muallem H, Gulley ML (2012) Quality assurance of RNA expression profiling in clinical laboratories. J Molec Diagnostics 14:1–11. doi: 10.1016/j.jmoldx.2011.09.003 CrossRefGoogle Scholar
  16. 16.
    Mortensen MM, Høyer S, Lynnerup A-S, Ørntoft TF, Sørensen KD, Borre M, Dyrskjøt L (2015) Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Nature: Scientific Reports 5:16018. doi: 10.1038/srep16018 Google Scholar
  17. 17.
    Nielsen T, Wallden B, Schaper C, Ferree S, Liu S, Gao D, Barry G, Dowidar N, Maysuria M, Storhoff J (2014) Analytic validation of the PAM50-based Prosigna breast cancer prognostic gene signature assay and nCounter analysis system using formalin-fixed paraffin embedded breast tumor specimens. BMC Cancer 14:177 http://www.biomedcentral.com/1471-2407/14/177 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese J-H, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587. doi: 10.1038/nature13319 CrossRefPubMedGoogle Scholar
  19. 19.
  20. 20.
    Quail MA, Smith M, Copeland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific BioScidences and Illumina MiSeq sequencers. BMC Genomics 13:341–354CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Corless CL (2016) Next-generation sequencing in cancer diagnostics. J Molec Diagn 18:813–816CrossRefGoogle Scholar
  22. 22.
    Misura M, Zhang T, Sukhai MA, Thomas M, Garg S, Kamel-Reid S, Stockley TL (2016) Comparison of next generation sequencing panels and platforms for detection and verification of somatic tumor variants for clinical diagnostics. J. Molec. Diagn. 18:842–850CrossRefGoogle Scholar
  23. 23.
    Gargis AG, Kalman L, Bick DP, da Silva C, Dimmock DP, Funke BH, Gowrisankar S, Hegde MR, Kulkarni S, Mason CE, Nagarajan R, Voelkerding KV, Worthey EA, Aziz N, Barnes J, Bennett SF, Bisht H, Church DM, Dimitrova Z, Gargis SR, Hafez N, Hambuch T, Hyland FCL, Luna RA, MacCannell D (2015) Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat Biotechnol 33:689–693. doi: 10.1038/nbt.3237 CrossRefPubMedGoogle Scholar
  24. 24.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G et al (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors. Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Molec Diagn 15:415–453CrossRefGoogle Scholar
  25. 25.
    NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer v. 3.2017. www.nccn.org.
  26. 26.
    Simon R, Roychowdhury S (2013) Implementing personalized cancer genomics in clinical trials. Nature 12:358–369Google Scholar
  27. 27.
    Training Residents in Genomics. (2012) www.pathologylearning.org/trig/resources
  28. 28.
  29. 29.
    Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feensgra I, Race V, Sistermans E, Sturm M, Weiss M, Yntem H, Bakker E, Scheffer H, Bauer P (2016) Guidelines for diagnostic next-generation sequencing. European J Human Genetics 24:2–5CrossRefGoogle Scholar
  30. 30.
    Deans Z, Watson CM, Charlton R, et al. Practice Guidelines for Targeted Next Generation Sequencing Analysis and Interpretation. http://www.acgs.uk.com/media/983872/bpg_for_targeted_next_generation_sequencing_-_approved_dec_2015.pdf
  31. 31.
    Joseph L, Cankovic M, Caughron S et al (2016) The spectrum of clinical utilities in molecular pathology testing procedures for inherited conditions and cancer. J Molec Pathol 5:605–619Google Scholar
  32. 32.
    Zehnbauer B, Lofton-Day C, Pfeifer J, Shaughnessy E, Goh L (2017) Diagnostic quality assurance pilot: a model to demonstrate comparative laboratory test performance with an oncology companion device assay. J Molec Diagn 19:1–3. doi: 10.1016/j.jmoldx.2016.10.001 CrossRefGoogle Scholar
  33. 33.

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineNorthShore University HealthSystemEvanstonUSA
  2. 2.University of Chicago Pritzker School of MedicineChicagoUSA

Personalised recommendations