Skip to main content

A high number of IgG4-positive cells in gastric cancer tissue is associated with tumor progression and poor prognosis

Abstract

IgG4-related disease is a newly defined disease characterized by elevated serum IgG4 levels and infiltration of affected organs by IgG4-positive plasma cells. Recently, increased IgG4 levels were reported to be closely related with malignancy. To assess the relationship between IgG4 and the progression of gastric cancer, we immunohistochemically stained in this study gastric cancer tissue samples for IgG4-positive cells using an anti-IgG4 antibody. In addition, pre- and postoperative serum concentrations of IgG4 were measured, using an enzyme-linked immunosorbent assay. In gastric cancer samples, the number of CD138-positive plasma cells was significantly lower and the number of IgG4-positive cells significantly higher than in non-cancerous gastric mucosa. The number of IgG4-positive cells was significantly correlated with gross tumor appearance, tumor depth, lymph node metastasis, venous invasion, and lymphatic invasion. Prognosis was significantly poorer in patients with a high number of IgG4-positive cells than in those with a low number. Multivariate analysis indicated that both the number of IgG4-positive cells and the depth of tumor invasion were independently prognostic of survival. In conclusion, in gastric cancer, the number of IgG4-positive cells is increased and this is closely associated with gastric cancer progression.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. doi:10.1056/NEJMoa1504627

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017. doi:10.1056/NEJMoa1414428

    Article  PubMed  Google Scholar 

  4. 4.

    Urban JL, Schreiber H (1992) Tumor antigens. Annu Rev Immunol 10:617–644. doi:10.1146/annurev.iy.10.040192.003153

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27:5869–5885. doi:10.1038/onc.2008.273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. Journal of Immunology Research 2014:149185. doi:10.1155/2014/149185

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. The Journal of Experimental Medicine 207:2175–2186. doi:10.1084/jem.20100637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, Old LJ, Odunsi K (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 107:7875–7880. doi:10.1073/pnas.1003345107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787. doi:10.1016/j.cell.2008.05.009

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13. doi:10.1038/ni.1818

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645. doi:10.1016/j.immuni.2009.04.010

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Yamaguchi T, Wing JB, Sakaguchi S (2011) Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol 23:424–430. doi:10.1016/j.smim.2011.10.002

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Wing JB, Ise W, Kurosaki T, Sakaguchi S (2014) Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41:1013–1025. doi:10.1016/j.immuni.2014.12.006

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi:10.1038/nm1093

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Perrone G, Ruffini PA, Catalano V, Spino C, Santini D, Muretto P, Spoto C, Zingaretti C, Sisti V, Alessandroni P, Giordani P, Cicetti A, D'Emidio S, Morini S, Ruzzo A, Magnani M, Tonini G, Rabitti C, Graziano F (2008) Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. European journal of cancer (Oxford, England: 1990) 44:1875–1882. doi:10.1016/j.ejca.2008.05.017

  16. 16.

    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol off J Am Soc Clin Oncol 24:5373–5380. doi:10.1200/jco.2006.05.9584

    Article  Google Scholar 

  17. 17.

    Karagiannis P, Gilbert AE, Josephs DH, Ali N, Dodev T, Saul L, Correa I, Roberts L, Beddowes E, Koers A, Hobbs C, Ferreira S, Geh JL, Healy C, Harries M, Acland KM, Blower PJ, Mitchell T, Fear DJ, Spicer JF, Lacy KE, Nestle FO, Karagiannis SN (2013) IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest 123:1457–1474. doi:10.1172/jci65579

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Papadea C, Check IJ (1989) Human immunoglobulin G and immunoglobulin G subclasses: biochemical, genetic, and clinical aspects. Crit Rev Clin Lab Sci 27:27–58. doi:10.3109/10408368909106589

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Steplewski Z, Sun LK, Shearman CW, Ghrayeb J, Daddona P, Koprowski H (1988) Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc Natl Acad Sci U S A 85:4852–4856

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hamano H, Kawa S, Horiuchi A, Unno H, Furuya N, Akamatsu T, Fukushima M, Nikaido T, Nakayama K, Usuda N, Kiyosawa K (2001) High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med 344:732–738. doi:10.1056/nejm200103083441005

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY (1998) IgE versus IgG4 production can be differentially regulated by IL-10. Journal of immunology (Baltimore, Md.: 1950) 160:3555–3561

  22. 22.

    Kamisawa T, Funata N, Hayashi Y, Eishi Y, Koike M, Tsuruta K, Okamoto A, Egawa N, Nakajima H (2003) A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol 38:982–984. doi:10.1007/s00535-003-1175-y

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Stone JH, Zen Y, Deshpande V (2012) IgG4-related disease. N Engl J Med 366:539–551. doi:10.1056/NEJMra1104650

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, Matsui S, Sumida T, Mimori T, Tanaka Y, Tsubota K, Yoshino T, Kawa S, Suzuki R, Takegami T, Tomosugi N, Kurose N, Ishigaki Y, Azumi A, Kojima M, Nakamura S, Inoue D (2012) A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details. Mod Rheumatol 22:1–14. doi:10.1007/s10165-011-0508-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Harada K, Shimoda S, Kimura Y, Sato Y, Ikeda H, Igarashi S, Ren XS, Sato H, Nakanuma Y (2012) Significance of immunoglobulin G4 (IgG4)-positive cells in extrahepatic cholangiocarcinoma: molecular mechanism of IgG4 reaction in cancer tissue. Hepatology 56:157–164. doi:10.1002/hep.25627

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Daveau M, Pavie-Fischer J, Rivat L, Rivat C, Ropartz C, Peter HH, Cesarini JP, Kourilsky FM (1977) IgG4 subclass in malignant melanoma. J Natl Cancer Inst 58:189–192

    CAS  PubMed  Google Scholar 

  27. 27.

    Karagiannis P, Villanova F, Josephs DH, Correa I, Van Hemelrijck M, Hobbs C, Saul L, Egbuniwe IU, Tosi I, Ilieva KM, Kent E, Calonje E, Harries M, Fentiman I, Taylor-Papadimitriou J, Burchell J, Spicer JF, Lacy KE, Nestle FO, Karagiannis SN (2015) Elevated IgG4 in patient circulation is associated with the risk of disease progression in melanoma. Oncoimmunology 4:e1032492. doi:10.1080/2162402x.2015.1032492

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  29. 29.

    Inoue H, Mori M, Honda M, Li J, Shibuta K, Mimori K, Ueo H, Akiyoshi T (1995) The expression of tumor-rejection antigen “MAGE” genes in human gastric carcinoma. Gastroenterology 109:1522–1525

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hoshino T, Seki N, Kikuchi M, Kuramoto T, Iwamoto O, Kodama I, Koufuji K, Takeda J, Itoh K (1997) HLA class-I-restricted and tumor-specific CTL in tumor-infiltrating lymphocytes of patients with gastric cancer. International Journal of Cancer Journal International Du Cancer 70:631–638

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, Benini L, Vantini I, Corrocher R, Puccetti A (2009) Identification of a novel antibody associated with autoimmune pancreatitis. N Engl J Med 361:2135–2142. doi:10.1056/NEJMoa0903068

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Guarneri F, Guarneri C, Benvenga S (2005) Helicobacter pylori and autoimmune pancreatitis: role of carbonic anhydrase via molecular mimicry? J Cell Mol Med 9:741–744

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kountouras J, Zavos C, Chatzopoulos D (2005) Autoimmune pancreatitis, helicobacter pylori infection, and apoptosis: a proposed relationship. Pancreas 30:192–193

    Article  PubMed  Google Scholar 

  34. 34.

    Shiokawa M, Kodama Y, Yoshimura K, Kawanami C, Mimura J, Yamashita Y, Asada M, Kikuyama M, Okabe Y, Inokuma T, Ohana M, Kokuryu H, Takeda K, Tsuji Y, Minami R, Sakuma Y, Kuriyama K, Ota Y, Tanabe W, Maruno T, Kurita A, Sawai Y, Uza N, Watanabe T, Haga H, Chiba T (2013) Risk of cancer in patients with autoimmune pancreatitis. Am J Gastroenterol 108:610–617. doi:10.1038/ajg.2012.465

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Asano J, Watanabe T, Oguchi T, Kanai K, Maruyama M, Ito T, Muraki T, Hamano H, Arakura N, Matsumoto A, Kawa S (2015) Association between immunoglobulin G4-related disease and malignancy within 12 years after diagnosis: an analysis after longterm followup. J Rheumatol 42:2135–2142. doi:10.3899/jrheum.150436

    Article  PubMed  Google Scholar 

  36. 36.

    Japanese Gastric Cancer Association (2011) Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 14:101–112. doi:10.1007/s10120-011-0041-5

    Article  Google Scholar 

  37. 37.

    Platts-Mills TA, Woodfolk JA, Erwin EA, Aalberse R (2004) Mechanisms of tolerance to inhalant allergens: the relevance of a modified Th2 response to allergens from domestic animals. Springer Semin Immunopathol 25:271–279. doi:10.1007/s00281-003-0149-8

    Article  PubMed  Google Scholar 

  38. 38.

    Satoguina JS, Weyand E, Larbi J, Hoerauf A (2005) T regulatory-1 cells induce IgG4 production by B cells: role of IL-10. Journal of immunology (Baltimore, Md.: 1950) 174:4718–4726

  39. 39.

    Sakamoto T, Saito H, Tatebe S, Tsujitani S, Ozaki M, Ito H, Ikeguchi M (2006) Interleukin-10 expression significantly correlates with minor CD8+ T-cell infiltration and high microvessel density in patients with gastric cancer. International Journal of Cancer. Journal International Du Cancer 118:1909–1914. doi:10.1002/ijc.21598

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Ikeguchi M, Hatada T, Yamamoto M, Miyake T, Matsunaga T, Fukumoto Y, Yamada Y, Fukuda K, Saito H, Tatebe S (2009) Serum interleukin-6 and −10 levels in patients with gastric cancer. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 12:95–100. doi:10.1007/s10120-009-0509-8

    CAS  Article  Google Scholar 

  41. 41.

    Ma GF, Miao Q, Liu YM, Gao H, Lian JJ, Wang YN, Zeng XQ, Luo TC, Ma LL, Shen ZB, Sun YH, Chen SY (2014) High FoxP3 expression in tumour cells predicts better survival in gastric cancer and its role in tumour microenvironment. Br J Cancer 110:1552–1560. doi:10.1038/bjc.2014.47

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zen Y, Liberal R, Nakanuma Y, Heaton N, Portmann B (2013) Possible involvement of CCL1-CCR8 interaction in lymphocytic recruitment in IgG4-related sclerosing cholangitis. J Hepatol 59:1059–1064. doi:10.1016/j.jhep.2013.06.016

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Yamaguchi H, Yoshida N, Takanashi M, Ito Y, Fukami K, Yanagihara K, Yashiro M, Sakai R (2014) Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS one 9:e85485. doi:10.1371/journal.pone.0085485

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Saito.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyatani, K., Saito, H., Murakami, Y. et al. A high number of IgG4-positive cells in gastric cancer tissue is associated with tumor progression and poor prognosis. Virchows Arch 468, 549–557 (2016). https://doi.org/10.1007/s00428-016-1914-0

Download citation

Keywords

  • B cell
  • Gastric cancer
  • IgG4
  • prognosis