Skip to main content
Log in

Potential role of Th17 cells in the pathogenesis of type 2 autoimmune pancreatitis

Virchows Archiv Aims and scope Submit manuscript

Abstract

Th17 cells have been shown to play an important role in the pathogenesis of a variety of autoimmune diseases. The aim of this study was to investigate the potential role of Th17 cells in autoimmune pancreatitis (AIP). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine gene expression of the signature cytokines of Th17 cells IL-17A and IL-21 and of the Th17 lineage-specific transcription factor retinoic acid receptor-related orphan receptor C (RORC) in human tissue specimens of AIP, classical chronic pancreatitis (CP), and normal pancreas (NP). Infiltrating immune cells were characterized by immunohistochemistry (IHC). Gene expression of IL-17A, IL-21, and RORC were found to be significantly increased in AIP. Accordingly, the number of Th17 cells was significantly increased in AIP compared to NP or CP. Both gene expression analysis and IHC revealed a clear difference between type 1 and 2 AIP. In the periductal compartment of type 2 AIP, which is characterized by granulocytic epithelial lesions (GELs), the number of infiltrating Th17 cells and neutrophilic granulocytes was significantly increased compared to type 1 AIP. Our data suggest that Th17 cells play a role in the pathogenesis of AIP, in particular of type 2 AIP. Cross-talk between Th17 cells and neutrophilic granulocytes mediated via IL-17A may be a potential mechanism by which neutrophils are recruited to the duct and acinar cells with subsequent destruction, a process that is pathognomonic for type 2 AIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sarles H, Sarles JC, Muratore R, Guien C (1961) Chronic inflammatory sclerosis of the pancreas—an autonomous pancreatic disease? Am J Dig Dis 6:688–698

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida K, Toki F, Takeuchi T, Watanabe S, Shiratori K, Hayashi N (1995) Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci 40:1561–1568

    Article  CAS  PubMed  Google Scholar 

  3. Shimosegawa T, Chari ST, Frulloni L, Kamisawa T, Kawa S, Mino-Kenudson M, Kim MH, Kloppel G, Lerch MM, Lohr M, Notohara K, Okazaki K, Schneider A, Zhang L (2011) International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas 40:352–358

    Article  PubMed  Google Scholar 

  4. Kawaguchi K, Koike M, Tsuruta K, Okamoto A, Tabata I, Fujita N (1991) Lymphoplasmacytic sclerosing pancreatitis with cholangitis: a variant of primary sclerosing cholangitis extensively involving pancreas. Hum Pathol 22:387–395

    Article  CAS  PubMed  Google Scholar 

  5. Detlefsen S, Zamboni G, Frulloni L, Feyerabend B, Braun F, Gerke O, Schlitter AM, Esposito I, Kloppel G (2012) Clinical features and relapse rates after surgery in type 1 autoimmune pancreatitis differ from type 2: a study of 114 surgically treated European patients. Pancreatology 12:276–283

    Article  PubMed  Google Scholar 

  6. Kamisawa T, Egawa N, Nakajima H (2003) Autoimmune pancreatitis is a systemic autoimmune disease. Am J Gastroenterol 98:2811–2812

    Article  PubMed  Google Scholar 

  7. Kloppel G, Detlefsen S, Chari ST, Longnecker DS, Zamboni G (2010) Autoimmune pancreatitis: the clinicopathological characteristics of the subtype with granulocytic epithelial lesions. J Gastroenterol 45:787–793

    Article  PubMed  Google Scholar 

  8. Notohara K, Burgart LJ, Yadav D, Chari S, Smyrk TC (2003) Idiopathic chronic pancreatitis with periductal lymphoplasmacytic infiltration: clinicopathologic features of 35 cases. Am J Surg Pathol 27:1119–1127

    Article  PubMed  Google Scholar 

  9. Zhang L, Chari S, Smyrk TC, Deshpande V, Kloppel G, Kojima M, Liu X, Longnecker DS, Mino-Kenudson M, Notohara K, Rodriguez-Justo M, Srivastava A, Zamboni G, Zen Y (2011) Autoimmune pancreatitis (AIP) type 1 and type 2: an international consensus study on histopathologic diagnostic criteria. Pancreas 40:1172–1179

    Article  CAS  PubMed  Google Scholar 

  10. Kino-Ohsaki J, Nishimori I, Morita M, Okazaki K, Yamamoto Y, Onishi S, Hollingsworth MA (1996) Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjogren’s syndrome. Gastroenterology 110:1579–1586

    Article  CAS  PubMed  Google Scholar 

  11. Nishimori I, Miyaji E, Morimoto K, Nagao K, Kamada M, Onishi S (2005) Serum antibodies to carbonic anhydrase IV in patients with autoimmune pancreatitis. Gut 54:274–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Okazaki K, Uchida K, Ohana M, Nakase H, Uose S, Inai M, Matsushima Y, Katamura K, Ohmori K, Chiba T (2000) Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 118:573–581

    Article  CAS  PubMed  Google Scholar 

  13. Asada M, Nishio A, Uchida K, Kido M, Ueno S, Uza N, Kiriya K, Inoue S, Kitamura H, Ohashi S, Tamaki H, Fukui T, Matsuura M, Kawasaki K, Nishi T, Watanabe N, Nakase H, Chiba T, Okazaki K (2006) Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas 33:20–26

    Article  CAS  PubMed  Google Scholar 

  14. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  16. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  CAS  PubMed  Google Scholar 

  18. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234

    Article  CAS  PubMed  Google Scholar 

  19. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima K (2012) Critical role of the interleukin-23/T-helper 17 cell axis in the pathogenesis of psoriasis. J Dermatol 39:219–224

    Article  CAS  PubMed  Google Scholar 

  22. Nakajima K, Kanda T, Takaishi M, Shiga T, Miyoshi K, Nakajima H, Kamijima R, Tarutani M, Benson JM, Elloso MM, Gutshall LL, Naso MF, Iwakura Y, DiGiovanni J, Sano S (2011) Distinct roles of IL-23 and IL-17 in the development of psoriasis-like lesions in a mouse model. J Immunol 186:4481–4489

    Article  CAS  PubMed  Google Scholar 

  23. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651

    Article  CAS  PubMed  Google Scholar 

  24. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB, Gorman DM, Smith K, de Waal MR, Kastelein RA, McClanahan TK, Bowman EP (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203:2577–2587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA, Krueger JG (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204:3183–3194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    Article  CAS  PubMed  Google Scholar 

  27. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    Article  CAS  PubMed  Google Scholar 

  28. Montes M, Zhang X, Berthelot L, Laplaud DA, Brouard S, Jin J, Rogan S, Armao D, Jewells V, Soulillou JP, Markovic-Plese S (2009) Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin Immunol 130:133–144

    Article  CAS  PubMed  Google Scholar 

  29. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Koenders MI, van den Berg WB (2010) Translational mini-review series on Th17 cells: are T helper 17 cells really pathogenic in autoimmunity? Clin Exp Immunol 159:131–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hwang SY, Kim HY (2005) Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cells 19:180–184

    CAS  PubMed  Google Scholar 

  32. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, Miossec P (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970

    Article  CAS  PubMed  Google Scholar 

  33. Shen H, Goodall JC, Hill Gaston JS (2009) Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 60:1647–1656

    Article  CAS  PubMed  Google Scholar 

  34. Kwok SK, Cho ML, Park MK, Oh HJ, Park JS, Her YM, Lee SY, Youn J, Ju JH, Park KS, Kim SI, Kim HY, Park SH (2012) Interleukin-21 promotes osteoclastogenesis in humans with rheumatoid arthritis and in mice with collagen-induced arthritis. Arthritis Rheum 64:740–751

    Article  CAS  PubMed  Google Scholar 

  35. Zenewicz LA, Antov A, Flavell RA (2009) CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 15:199–207

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Chu Y, Yang X, Gao D, Zhu L, Wan L, Li M (2009) Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 60:1472–1483

    Article  PubMed  Google Scholar 

  37. Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, Fabien N, Cochat P, Pouteil-Noble C, Trolliet P, Durieu I, Tebib J, Kassai B, Ansieau S, Puisieux A, Eliaou JF, Bonnefoy-Berard N (2009) Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 10:778–785

    Article  CAS  PubMed  Google Scholar 

  38. Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VS, Lau CS, Cao X, Lu L (2015) Th17 cells play a critical role in the development of experimental Sjögren's syndrome. Ann Rheum Dis 74:1302-10

  39. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, Cosmi L, Lunardi C, Annuniato F, Romagnani S, Cassatella MA (2010) Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115:335–343

    Article  CAS  PubMed  Google Scholar 

  40. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  41. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal MR (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    Article  CAS  PubMed  Google Scholar 

  42. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  CAS  PubMed  Google Scholar 

  43. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533–544

    Article  CAS  PubMed  Google Scholar 

  44. McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC (2001) Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 194:873–882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ, Ouyang W (2008) Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289

    Article  CAS  PubMed  Google Scholar 

  46. Liu ZJ, Yadav PK, Su JL, Wang JS, Fei K (2009) Potential role of Th17 cells in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 15:5784–5788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  PubMed  Google Scholar 

  48. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP, Krueger JG (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 128:1207–1211

    Article  CAS  PubMed  Google Scholar 

  49. Teunissen MB, Koomen CW, de Waal MR, Wierenga EA, Bos JD (1998) Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 111:645–649

    Article  CAS  PubMed  Google Scholar 

  50. Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol 128:2625–2630

    Article  CAS  PubMed  Google Scholar 

  51. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, Rivas E, Tsai TF, Wasel N, Tyring S, Salko T, Hampele I, Notter M, Karpov A, Helou S, Papavassilis C, ERASURE Study Group; FIXTURE Study Group (2014) Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med 371:326–338

    Article  PubMed  Google Scholar 

  52. Durelli L, Conti L, Clerico M, Boselli D, Contessa G, Ripellino P, Ferrero B, Eid P, Novelli F (2009) T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 65:499–509

    Article  CAS  PubMed  Google Scholar 

  53. Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R, Thiel A, Radbruch A, Loddenkemper C, Sieper J (2011) Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther 13:R95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jürgens M, Schmechel S, Konrad A, Göke B, Ochsenkühn T, Müller-Myhsok B, Lohse P, Brand S (2008) Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn’s disease and analysis of the IL17F p. His161Arg polymorphism in IBD. Inflamm Bowel Dis 14:437–445

    Article  PubMed  Google Scholar 

  56. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13:3–10

    Article  CAS  PubMed  Google Scholar 

  57. Caprioli F, Bose F, Rossi RL, Petti L, Vigano C, Ciafardini C, Raeli L, Basilisco G, Ferrero S, Pagani M, Conte D, Altomare G, Monteleone G, Abrignani S, Reali E (2013) Reduction of CD68+ macrophages and decreased IL-17 expression in intestinal mucosa of patients with inflammatory bowel disease strongly correlate with endoscopic response and mucosal healing following infliximab therapy. Inflamm Bowel Dis 19:729–739

    Article  PubMed  Google Scholar 

  58. Kawa S, Okazaki K, Notohara K, Watanabe M, Shimosegawa T; Study Group for Pancreatitis Complicated with Inflammatory Bowel Disease organized by The Research Committee for Intractable Pancreatic Disease (Chairman: Tooru Shimosegawa) and The Research Committee for Intractable Inflammatory Bowel Disease (Chairman: Mamoru Watanabe), both of which are supported by the Ministry of Health, Labour, and Welfare of Japan (2015) Autoimmune pancreatitis complicated with inflammatory bowel disease and comparative study of type 1 and type 2 autoimmune pancreatitis. J Gastroenterol 50:805-15

Download references

Conflict of interest

All authors declare that there is no actual or potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Loos.

Additional information

M. Loos and F. Lauffer contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(JPEG 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loos, M., Lauffer, F., Schlitter, A.M. et al. Potential role of Th17 cells in the pathogenesis of type 2 autoimmune pancreatitis. Virchows Arch 467, 641–648 (2015). https://doi.org/10.1007/s00428-015-1850-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1850-4

Keywords

Navigation