Virchows Archiv

, Volume 467, Issue 2, pp 185–191 | Cite as

Genetic testing of leiomyoma tissue in women younger than 30 years old might provide an effective screening approach for the hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC)

  • Petr Martínek
  • Petr Grossmann
  • Ondřej Hes
  • Jiří Bouda
  • Viktor Eret
  • Norma Frizzell
  • Anthony J Gill
  • Ondrej Ondič
Original Article

Abstract

We have studied the viability of targeted molecular screening for the identification of female patients with hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. Affected patients harbor a germ-line heterozygous mutation of the fumarate hydratase (FH) gene. Clinically, some patients present with aggressive renal cell carcinoma. Concerning women, in almost all cases, this is preceded by symptomatic uterine leiomyoma. We aimed to identify women operated on for symptomatic leiomyoma by the age of 30. Archived paraffin-embedded leiomyoma tissue was tested for the FH gene mutation in 14 cases. Two patients with multiple leiomyomas and with the confirmed germ-line mutations c.1433_1434dupAAA, p.(Lys477dup) and c.953A>T, p.(His318Leu) were identified and enrolled in a surveillance program. Statistically significant correlation between the presence of multiple uterine leiomyomas (more than seven in our experience) and the FH gene mutation was found. The immunohistochemical expression pattern, of simultaneous FH absence and S-(2-succino)cysteine (2SC) positivity, correlated with the results of the molecular genetic study in only one case. The histomorphologically simultaneous detection of enlarged nucleoli with a clear halo of leiomyocyte nuclei, their fibrillary cytoplasm, the presence of eosinophilic globules, and staghorn vessels proved to be only a partially sensitive indicator of HLRCC-associated leiomyoma and fully correlated with immunohistochemistry and molecular genetic study only in one case. Molecular genetic testing is presently the only reliable diagnostic tool able to identify HLRCC patients. The sensitivity and specificity of the presence of multiple leiomyomas in women with the FH gene mutation who are younger than 30 years old should be confirmed in larger scale studies. The applied targeted molecular screening protocol proved to be effective, resulting in identification of two positive patients out of fourteen tested individuals.

Keywords

HLRCC Fumarate hydratase FH Leiomyoma Renal cell carcinoma 

References

  1. 1.
    Kiuru M, Lehtonen R, Arola J, Salovaara R, Järvinen H, Aittomäki K, Sjöberg J, Visakorpi T, Knuutila S, Isola J, Delahunt B, Herva R, Launonen V, Karhu A, Aaltonen LA (2002) Few FH mutations in sporadic counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer families. Cancer Res 62(16):4554–4557PubMedGoogle Scholar
  2. 2.
    Sanz-Ortega J, Vocke C, Stratton P, Linehan WM, Merino MJ (2013) Morphologic and molecular characteristics of uterine leiomyomas in hereditary leiomyomatosis and renal cancer (HLRCC) syndrome. Am J Surg Pathol 37(1):74–80. doi:10.1097/PAS.0b013e31825ec16f PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, Turner ML, Stewart L, Duray P, Tourre O, Sharma N, Choyke P, Stratton P, Merino M, Walther MM, Linehan WM, Schmidt LS, Zbar B (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73(1):95–106PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Reyes C, Karamurzin Y, Frizzell N, Garg K, Nonaka D, Chen Y, Soslow R (2014) Uterine smooth muscle tumors with features suggesting fumarate hydratase aberration: detailed morphologic analysis and correlation with S-(2-succino)-cysteine immunohistochemistry. Mod Pathol 27(7):1020–1027PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317. doi:10.1038/sj.leu.2403202 PubMedCrossRefGoogle Scholar
  6. 6.
    National Library of Medicine (2014) The NCBI Probe Database http://www.ncbi.nlm.nih.gov/probe. Accesed 24 May 2014
  7. 7.
    Nagai R, Brock JW, Blatnik M, Baatz JE, Bethard J, Walla MD, Thorpe SR, Baynes JW, Frizzell N (2007) Succination of protein thiols during adipocyte maturation: a biomarker of mitochondrial stress. J Biol Chem 282:34219–34228PubMedCrossRefGoogle Scholar
  8. 8.
    Bardella C, El-Bahrawy M, Frizzell N et al (2011) Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J Pathol 225:4–11PubMedCrossRefGoogle Scholar
  9. 9.
    Ewbank C, Kerrigan JF, Aleck K (2006) Fumarate Hydratase Deficiency http://www.ncbi.nlm.nih.gov/books/NBK1506/. Accesed 24 May 2014
  10. 10.
    Deschauer M, Gizatullina Z, Schulze A, Pritsch M, Knöppel C, Knape M, Zierz S, Gellerich FN (2006) Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab 88(2):146–152PubMedCrossRefGoogle Scholar
  11. 11.
    Wong MH, Tan CS, Lee SC, Yong Y, Ooi AS, Ngeow J, Tan MH (2014) Potential genetic anticipation in hereditary leiomyomatosis renal cell cancer (HLRCC). Fam Cancer 13:281–289. doi:10.1007/s10689-014-9703-x PubMedCrossRefGoogle Scholar
  12. 12.
    ISUP Vancouver Classification (2013) Am J Surg Pathol 37(10):1469–1489. doi:10.1097/PAS.0b013e318299f2d1 CrossRefGoogle Scholar
  13. 13.
    Llamas-Velasco M, Requena L, Kutzner H, Schärer L, Rütten A, Hantschke M, Paredes BE, Mentzel T (2014) Fumarate hydratase immunohistochemical staining may help to identify patients with multiple cutaneous and uterine leiomyomatosis (MCUL) and hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome. J Cutan Pathol 41(11):859–865. doi:10.1111/cup.12396 PubMedCrossRefGoogle Scholar
  14. 14.
    Chen YB, Brannon AR, Toubaji A, Dudas ME, Won HH, Al- Ahmadie HA, Fine SW, Gopalan A, Frizzell N, Voss MH, Russo P, Berger MF, Tickoo SK, Reuter VE (2014) Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am J Surg Pathol 38(5):627–637. doi:10.1097/PAS.0000000000000163 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32(5):557–563. doi:10.1002/humu.21438 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Petr Martínek
    • 1
    • 2
  • Petr Grossmann
    • 2
  • Ondřej Hes
    • 1
  • Jiří Bouda
    • 3
  • Viktor Eret
    • 4
  • Norma Frizzell
    • 5
  • Anthony J Gill
    • 6
    • 7
  • Ondrej Ondič
    • 1
    • 2
  1. 1.Šikl’s Department of Pathology, University Hospital, Faculty of Medicine in PilsenCharles University in PraguePilsenCzech Republic
  2. 2.Department of GeneticsBioptická laboratoř s.r.oPilsenCzech Republic
  3. 3.Department of Gynecology and Obstetrics, University Hospital, Faculty of Medicine in PilsenCharles University in PraguePilsenCzech Republic
  4. 4.Department of Urology, University Hospital, Faculty of Medicine in PilsenCharles University in PraguePilsenCzech Republic
  5. 5.Department of Pharmacology, Physiology and Neuroscience, School of MedicineUniversity of South CarolinaColumbiaUSA
  6. 6.Department of Anatomical PathologyRoyal North Shore HospitalSt LeonardsAustralia
  7. 7.University of SydneySydneyAustralia

Personalised recommendations