Virchows Archiv

, Volume 467, Issue 2, pp 203–210 | Cite as

Next-generation sequencing is highly sensitive for the detection of beta-catenin mutations in desmoid-type fibromatoses

  • Sarah J. Aitken
  • Nadège Presneau
  • Sangeetha Kalimuthu
  • Palma Dileo
  • Fitim Berisha
  • Roberto Tirabosco
  • M. Fernanda Amary
  • Adrienne M. Flanagan
Original Article

Abstract

Desmoid-type fibromatoses are locally aggressive and frequently recurrent tumours, and an accurate diagnosis is essential for patient management. The majority of sporadic lesions harbour beta-catenin (CTNNB1) mutations. We used next-generation sequencing to detect CTNNB1 mutations and to compare the sensitivity and specificity of next-generation sequencing with currently employed mutation detection techniques: mutation-specific restriction enzyme digestion and polymerase chain reaction amplification. DNA was extracted from formalin-fixed paraffin-embedded needle biopsy or resection tissue sections from 144 patients with sporadic desmoid-type fibromatoses, four patients with syndrome-related desmoid-type fibromatoses and 11 morphological mimics. Two primer pairs were designed for CTNNB1 mutation hotspots. Using ≥10 ng of DNA, libraries were generated by Fluidigm and sequenced on the Ion Torrent Personal Genome Machine. Next-generation sequencing had a sensitivity of 92.36 % (133/144, 95 % CIs: 86.74 to 96.12 %) and a specificity of 100 % for the detection of CTNNB1 mutations in desmoid-type fibromatoses-like spindle cell lesions. All mutations detected by mutation-specific restriction enzyme digestion were identified by next-generation sequencing. Next-generation sequencing identified additional mutations in 11 tumours that were not detected by mutation-specific restriction enzyme digestion, two of which have not been previously described. Next-generation sequencing is highly sensitive for the detection of CTNNB1 mutations. This multiplex assay has the advantage of detecting additional mutations compared to those detected by mutation-specific restriction enzyme digestion (sensitivity 82.41 %). The technology requires minimal DNA and is time- and cost-efficient.

Keywords

Next-generation sequencing Desmoid-type fibromatosis Beta-catenin CTNNB1 Molecular pathology 

References

  1. 1.
    Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, World Health Organization Classification of Tumours (2013) Pathology and genetics of tumours of soft tissue and bone, 4th edn. WHO Press, LyonGoogle Scholar
  2. 2.
    Escobar C, Munker R, Thomas JO, Li BD, Burton GV (2012) Update on desmoid tumors. Ann Oncol 23(3):562–569PubMedCrossRefGoogle Scholar
  3. 3.
    Reitamo JJ, Häyry P, Nykyri E, Saxén E (1982) The desmoid tumor. I. Incidence, sex-, age- and anatomical distribution in the Finnish population. Am J Clin Pathol 77(6):665–673PubMedGoogle Scholar
  4. 4.
    Le Guellec S, Soubeyran I, Rochaix P, Filleron T, Neuville A, Hostein I et al (2012) CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol 25(12):1551–1558PubMedCrossRefGoogle Scholar
  5. 5.
    Stoeckle E, Coindre JM, Longy M, Binh MBN, Kantor G, Kind M et al (2009) A critical analysis of treatment strategies in desmoid tumours: a review of a series of 106 cases. Eur J Surg Oncol 35(2):129–134PubMedCrossRefGoogle Scholar
  6. 6.
    Devata S, Chugh R (2013) Desmoid tumors: a comprehensive review of the evolving biology, unpredictable behavior, and myriad of management options. Hematol Oncol Clin North Am 27(5):989–1005PubMedCrossRefGoogle Scholar
  7. 7.
    Briand S, Barbier O, Biau D, Bertrand-Vasseur A, Larousserie F, Anract P et al (2014) Wait-and-see policy as a first-line management for extra-abdominal desmoid tumors. J Bone Joint Surg Am 96(8):631–638PubMedCrossRefGoogle Scholar
  8. 8.
    Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y (1998) Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res 10(11–12):591–594PubMedGoogle Scholar
  9. 9.
    Amary MFC, Pauwels P, Meulemans E, Roemen GM, Islam L, Idowu B et al (2007) Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol 31(9):1299–1309PubMedCrossRefGoogle Scholar
  10. 10.
    Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404PubMedCrossRefGoogle Scholar
  11. 11.
    Lips DJ, Barker N, Clevers H, Hennipman A (2009) The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol 35(1):3–10PubMedCrossRefGoogle Scholar
  12. 12.
    Yost SE, Smith EN, Schwab RB, Bao L, Jung H, Wang X et al (2012) Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens. Nucleic Acids Res 40(14):e107PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Salto-Tellez M, de Castro DG. Next generation sequencing: a change of paradigm in molecular diagnostic validation. J Pathol. 2014.Google Scholar
  14. 14.
    Desai AN, Jere A (2012) Next-generation sequencing: ready for the clinics? Clin Genet 81(6):503–510PubMedCrossRefGoogle Scholar
  15. 15.
    Katsanis SH, Katsanis N (2013) Molecular genetic testing and the future of clinical genomics. Nat Rev Genet 14(6):415–426PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):115CrossRefGoogle Scholar
  17. 17.
    Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291PubMedCrossRefGoogle Scholar
  18. 18.
    Eastley N, Aujla R, Silk R, Richards CJ, McCulloch TA, Esler CP, et al. Extra-abdominal desmoid fibromatosis—a sarcoma unit review of practice, long term recurrence rates and survival. Eur J Surg Oncol. 2014.Google Scholar
  19. 19.
    Sim J, Wright CC (2005) The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther 85(3):257–268PubMedGoogle Scholar
  20. 20.
    Lazar AJF, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E et al (2008) Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 173(5):1518–1527PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Tejpar S, Nollet F, Li C, Wunder JS, Michils G (1999) dal Cin P, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 18(47):6615–6620PubMedCrossRefGoogle Scholar
  22. 22.
    Mullen JT, DeLaney TF, Rosenberg AE, Le L, Iafrate AJ, Kobayashi W et al (2013) β-Catenin mutation status and outcomes in sporadic desmoid tumors. Oncologist 18(9):1043–1049PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Colombo C, Miceli R, Lazar AJ, Perrone F, Pollock RE, Le Cesne A et al (2013) CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer 119(20):3696–3702PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sarah J. Aitken
    • 1
    • 2
    • 5
  • Nadège Presneau
    • 1
    • 6
  • Sangeetha Kalimuthu
    • 3
  • Palma Dileo
    • 4
  • Fitim Berisha
    • 3
  • Roberto Tirabosco
    • 3
  • M. Fernanda Amary
    • 1
    • 3
  • Adrienne M. Flanagan
    • 1
    • 3
  1. 1.Research Department of PathologyUCL Cancer InstituteLondonUK
  2. 2.Department of HistopathologyAddenbrooke’s HospitalCambridgeUK
  3. 3.Royal National Orthopaedic Hospital NHS TrustStanmoreUK
  4. 4.University College HospitalLondonUK
  5. 5.Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
  6. 6.Department of Biomedical SciencesUniversity of WestminsterLondonUK

Personalised recommendations