Advertisement

Virchows Archiv

, Volume 465, Issue 4, pp 385–393 | Cite as

Peroxisome proliferator-activated receptor-γ and thymic stromal lymphopoietin are involved in the pathophysiology of childhood coeliac disease

  • Erna Sziksz
  • Kriszta Molnár
  • Rita Lippai
  • Domonkos Pap
  • Anna Ónody
  • Apor Veres-Székely
  • Péter Vörös
  • Dolóresz Szabó
  • Hajnalka Győrffy
  • Gábor Veres
  • Tivadar Tulassay
  • Ádám Vannay
  • András AratóEmail author
Original Article

Abstract

Celiac disease (CD) is a chronic autoimmune enteropathy caused by exposure to dietary gluten in genetically predisposed individuals. The transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) was shown to exert protective effects in several immune-mediated disorders. Activation of PPARγ suppressed the expression of thymic stromal lymphopoietin (TSLP), an inducer of proinflammatory cytokines. Since the role of TSLP in gluten-sensitive enteropathy is completely unknown, we investigated the involvement of TSLP and its regulator PPARγ in childhood CD. We collected duodenal biopsy specimens from 19 children with newly diagnosed CD, 6 children with treated CD (gluten-free diet, GFD), and 10 controls. Expression of mRNA and protein levels of PPARγ, TSLP, and TSLP receptor were determined by real-time RT-PCR and Western blot, respectively. Duodenal localization of PPARγ and TSLP was studied by immunohistochemistry. In duodenal mucosa of children with CD, the amount of PPARγ was significantly lower and simultaneously that of TSLP significantly higher compared to controls (p < 0.05). In GFD-treated patients, the levels of PPARγ mRNA and protein were significantly higher while that of TSLP markedly lower compared to newly diagnosed CD (p < 0.05). Immunohistochemistry revealed PPARγ and TSLP expression in lamina propria immune cells and in enterocytes. Low expression of PPARγ and high expression of TSLP in the duodenal mucosa of children with newly diagnosed CD suggest that they are involved in the pathophysiology of CD. We hypothesize that PPARγ may be an inhibitory regulator of TSLP-stimulated inflammatory processes in CD.

Keywords

TSLP PPARγ Coeliac disease Children Duodenal biopsies 

Notes

Acknowledgments

We are grateful to Mária Bernáth and Erika Sklánitz Samodai for their excellent technical assistance. This work was supported by Hungarian National Scientific Research Foundation Grant-OTKA-K81117, -84087/2010, -K105530, -PD83431, -PD105361; Lendulet Research Grant-LP2011-008, 2011; TÁMOP 4.2.2. B-10/1-2010-2013. Ádám Vannay and Gábor Veres are holders of the János Bolyai Research grant; this work was supported by the János Bolyai Research Scholarschip of the Hungarian Academy of Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barroso E, Eyre E, Palomer X, Vazquez-Carrera M (2011) The peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) agonist GW501516 prevents TNF-alpha-induced NF-kappaB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochem Pharmacol 81:534–543. doi: 10.1016/j.bcp.2010.12.004 PubMedCrossRefGoogle Scholar
  2. 2.
    Bertin B, Dubuquoy L, Colombel JF, Desreumaux P (2013) PPAR-gamma in ulcerative colitis: a novel target for intervention. Curr Drug Targets 14:1501–1507PubMedCrossRefGoogle Scholar
  3. 3.
    Christmann RB, Mathes A, Affandi AJ, Padilla C, Nazari B, Bujor AM, Stifano G, Lafyatis R (2013) Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor beta. Arthritis Rheum 65:1335–1346. doi: 10.1002/art.37859 PubMedCrossRefGoogle Scholar
  4. 4.
    Cinova J, Palova-Jelinkova L, Smythies LE, Cerna M, Pecharova B, Dvorak M, Fruhauf P, Tlaskalova-Hogenova H, Smith PD, Tuckova L (2007) Gliadin peptides activate blood monocytes from patients with celiac disease. J Clin Immunol 27:201–209. doi: 10.1007/s10875-006-9061-z PubMedCrossRefGoogle Scholar
  5. 5.
    Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Maffia P, Patel NS, Di Paola R, Ialenti A, Genovese T, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C (2004) Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol 483:79–93PubMedCrossRefGoogle Scholar
  6. 6.
    De Re V, Simula MP, Notarpietro A, Canzonieri V, Cannizzaro R, Toffoli G (2010) Do gliadin and tissue transglutaminase mediate PPAR downregulation in intestinal cells of patients with coeliac disease? Gut 59:1730–1731. doi: 10.1136/gut.2010.209395 PubMedCrossRefGoogle Scholar
  7. 7.
    Grygiel-Gorniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J 13:17. doi: 10.1186/1475-2891-13-17 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Guandalini S, Assiri A (2014) Celiac disease: a review. JAMA Pediatr. doi: 10.1001/jamapediatrics.2013.3858 PubMedGoogle Scholar
  9. 9.
    Heneka MT, Reyes-Irisarri E, Hull M, Kummer MP (2011) Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr Neuropharmacol 9:643–650. doi: 10.2174/157015911798376325 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, Troncone R, Giersiepen K, Branski D, Catassi C, Lelgeman M, Maki M, Ribes-Koninckx C, Ventura A, Zimmer KP, Diagnosis EWGoCD, Committee EG, European Society for Pediatric Gastroenterology H, Nutrition (2012) European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 54:136–160. doi: 10.1097/MPG.0b013e31821a23d0 PubMedCrossRefGoogle Scholar
  11. 11.
    Jung K, Tanaka A, Fujita H, Matsuda A, Oida K, Karasawa K, Okamoto N, Ohmori K, Jee Y, Shin T, Matsuda H (2011) Peroxisome proliferator-activated receptor gamma-mediated suppression of dendritic cell function prevents the onset of atopic dermatitis in NC/Tnd mice. J Allergy Clin Immunol 127(420–429):e421–e426. doi: 10.1016/j.jaci.2010.10.043 Google Scholar
  12. 12.
    Kim SY, Jeong EJ, Steinert PM (2002) IFN-gamma induces transglutaminase 2 expression in rat small intestinal cells. J Interf Cytokine Res Off J Int Soc Interf Cytokine Res 22:677–682. doi: 10.1089/10799900260100169 CrossRefGoogle Scholar
  13. 13.
    Lahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A (1999) Cytokine profile in coeliac disease. Scand J Immunol 49:441–446PubMedCrossRefGoogle Scholar
  14. 14.
    Liu YJ (2009) TSLP in epithelial cell and dendritic cell cross talk. Adv Immunol 101:1–25. doi: 10.1016/S0065-2776(08)01001-8 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Luciani A, Villella VR, Vasaturo A, Giardino I, Pettoello-Mantovani M, Guido S, Cexus ON, Peake N, Londei M, Quaratino S, Maiuri L (2010) Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa. Gut 59:311–319. doi: 10.1136/gut.2009.183608 PubMedCrossRefGoogle Scholar
  16. 16.
    Pelkowski TD, Viera AJ (2014) Celiac disease: diagnosis and management. Am Fam Physician 89:99–105PubMedGoogle Scholar
  17. 17.
    Sharabi Y, Oron-Herman M, Kamari Y, Avni I, Peleg E, Shabtay Z, Grossman E, Shamiss A (2007) Effect of PPAR-gamma agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am J Hypertens 20:206–210. doi: 10.1016/j.amjhyper.2006.08.002 PubMedCrossRefGoogle Scholar
  18. 18.
    Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, De Re V (2010) PPAR signaling pathway and cancer-related proteins are involved in celiac disease-associated tissue damage. Mol Med 16:199–209. doi: 10.2119/molmed.2009.00173 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Soares FL, de Oliveira MR, Teixeira LG, Menezes Z, Pereira SS, Alves AC, Batista NV, de Faria AM, Cara DC, Ferreira AV, Alvarez-Leite JI (2013) Gluten-free diet reduces adiposity, inflammation and insulin resistance associated with the induction of PPAR-alpha and PPAR-gamma expression. J Nutr Biochem 24:1105–1111. doi: 10.1016/j.jnutbio.2012.08.009 PubMedCrossRefGoogle Scholar
  20. 20.
    Sziksz E, Vörös P, Veres G, Fekete A, Vannay Á (2013) Coeliac disease: from triggering factors to treatment. Int J Celiac Dis 1:9–13Google Scholar
  21. 21.
    Takai T (2012) TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int Off J Jpn Soc Allergol 61:3–17. doi: 10.2332/allergolint.11-RAI-0395 CrossRefGoogle Scholar
  22. 22.
    Tomita T, Kakiuchi Y, Tsao PS (2006) THR0921, a novel peroxisome proliferator-activated receptor gamma agonist, reduces the severity of collagen-induced arthritis. Arthritis Res Ther 8:R7. doi: 10.1186/ar1856 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Vannay A, Sziksz E, Prokai A, Veres G, Molnar K, Szakal DN, Onody A, Korponay-Szabo IR, Szabo A, Tulassay T, Arato A, Szebeni B (2010) Increased expression of hypoxia-inducible factor 1alpha in coeliac disease. Pediatr Res 68:118–122. doi: 10.1203/00006450-201011001-0022710.1203/PDR.0b013e3181e5bc96 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erna Sziksz
    • 1
    • 2
  • Kriszta Molnár
    • 2
  • Rita Lippai
    • 2
  • Domonkos Pap
    • 2
  • Anna Ónody
    • 2
  • Apor Veres-Székely
    • 2
  • Péter Vörös
    • 2
  • Dolóresz Szabó
    • 2
  • Hajnalka Győrffy
    • 3
  • Gábor Veres
    • 2
  • Tivadar Tulassay
    • 1
    • 2
  • Ádám Vannay
    • 1
    • 2
  • András Arató
    • 2
    Email author
  1. 1.MTA-SE, Pediatrics and Nephrology Research GroupBudapestHungary
  2. 2.1st Department of PediatricsSemmelweis UniversityBudapest,Hungary
  3. 3.2nd Department of PathologySemmelweis UniversityBudapestHungary

Personalised recommendations