Skip to main content

Advertisement

Log in

Mutations affecting BRAF, EGFR, PIK3CA, and KRAS are not associated with sporadic vestibular schwannomas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Sporadic vestibular schwannomas are benign tumors originating from the Schwann cells of the vestibular portion of the eigth cranial nerve. An important clinical hallmark of these tumors is their variable growth rate. Investigating vestibular schwannoma biology can help to clarify this variable growth rate and may offer targets for therapeutic treatment. A recent mutation analysis on sporadic non-head and neck schwannomas detected BRAF mutations in around 20 % of tumors. BRAF is part of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. MAPK/ERK activation is associated with an uncontrolled cell growth. Mutated BRAF can function as a target to inhibit this pathway. Mutations in BRAF and other members of the MAPK/ERK pathway have not been investigated in sporadic vestibular schwannomas before. The goal of this study was to investigate if these mutations are present in vestibular schwannomas and whether these mutations correlate with tumor growth. Tumor specimens of 48 patients surgically treated for a sporadic vestibular schwannoma were analyzed. An allele-specific quantitative real-time PCR assay was performed to detect the 13 most frequent mutations affecting BRAF, EGFR, PIK3CA, and KRAS. Radiologically measured tumor growth was included in the analysis to identify potential relationships between these mutations and tumor progression. No activating hotspot mutations in BRAF, EGFR, PIK3CA, or KRAS were detected. The 13 most frequent mutations affecting BRAF, EGFR, PIK3CA, and KRAS are not involved in sporadic vestibular schwannoma development. These results are in contrast to the recent detection of these BRAF mutations in non-head and neck schwannomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mautner VF, Nguyen R, Kutta H et al (2010) Bevacizumab induces regression of vestibular schwannomas in patients with neurofibromatosis type 2. Neuro Oncol 12:14–18

    Article  PubMed  Google Scholar 

  2. Seizinger BR, Martuza RL, Gusella JF (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322:644–647

    Article  PubMed  CAS  Google Scholar 

  3. Rouleau GA, Merel P, Lutchman M et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521

    Article  PubMed  CAS  Google Scholar 

  4. Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800

    Article  PubMed  CAS  Google Scholar 

  5. Golovnina K, Blinov A, Akhmametyeva EM et al (2005) Evolution and origin of merlin, the product of the neurofibromatosis type 2 (NF2) tumor-suppressor gene. BMC Evol Biol 5:69

    Article  PubMed  Google Scholar 

  6. Aarhus M, Bruland O, Saetran HA et al (2010) Global gene expression profiling and tissue microarray reveal novel candidate genes and down-regulation of the tumor suppressor gene CAV1 in sporadic vestibular schwannomas. Neurosurgery 67:998–1019

    Article  PubMed  Google Scholar 

  7. Irving RM, Moffat DA, Hardy DG et al (1994) Somatic NF2 gene mutations in familial and non-familial vestibular schwannoma. Hum Mol Genet 3:347–350

    Article  PubMed  CAS  Google Scholar 

  8. Jacoby LB, MacCollin M, Barone R et al (1996) Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 17:45–55

    Article  PubMed  CAS  Google Scholar 

  9. Sainz J, Huynh DP, Figueroa K et al (1994) Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 3:885–891

    Article  PubMed  CAS  Google Scholar 

  10. Lekanne Deprez RH, Bianchi AB, Groen NA et al (1994) Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas. Am J Hum Genet 54:1022–1029

    PubMed  CAS  Google Scholar 

  11. Hadfield KD, Smith MJ, Urquhart JE et al (2010) Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas. Oncogene 29:6216–6221

    Article  PubMed  CAS  Google Scholar 

  12. Gutmann DH, Giordano MJ, Fishback AS et al (1997) Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 49:267–270

    Article  PubMed  CAS  Google Scholar 

  13. Hitotsumatsu T, Iwaki T, Kitamoto T et al (1997) Expression of neurofibromatosis 2 protein in human brain tumors: an immunohistochemical study. Acta Neuropathol 93:225–232

    Article  PubMed  CAS  Google Scholar 

  14. Huynh DP, Mautner V, Baser ME et al (1997) Immunohistochemical detection of schwannomin and neurofibromin in vestibular schwannomas, ependymomas and meningiomas. J Neuropathol Exp Neurol 56:382–390

    Article  PubMed  CAS  Google Scholar 

  15. Kino T, Takeshima H, Nakao M et al (2001) Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma. Genes Cells 6:441–454

    Article  PubMed  CAS  Google Scholar 

  16. Kullar PJ, Pearson DM, Malley DS et al (2010) CpG island hypermethylation of the neurofibromatosis type 2 (NF2) gene is rare in sporadic vestibular schwannomas. Neuropathol Appl Neurobiol 36:505–514

    Article  PubMed  CAS  Google Scholar 

  17. Serrano C, Simonetti S, Hernandez J et al (2010) BRAF V600E mutations in benign and malignant peripheral nerve sheath tumors. J Clin Oncol 28:15s (abstract)

    Article  Google Scholar 

  18. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  PubMed  CAS  Google Scholar 

  19. Dahiya S, Yu J, Kaul A et al (2012) Novel BRAF alteration in a sporadic pilocytic astrocytoma. Case Report Med 2012:418672

    PubMed  Google Scholar 

  20. Lin A, Rodriguez FJ, Karajannis MA et al (2012) BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71:66–72

    Article  PubMed  CAS  Google Scholar 

  21. Basto D, Trovisco V, Lopes JM et al (2005) Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathol 109:207–210

    Article  PubMed  CAS  Google Scholar 

  22. Jeuken J, van den Broecke C, Gijsen S et al (2007) RAS/RAF pathway activation in gliomas: the result of copy number gains rather than activating mutations. Acta Neuropathol 114:121–133

    Article  PubMed  CAS  Google Scholar 

  23. Perrone F, Da RL, Orsenigo M et al (2009) PDGFRA, PDGFRB, EGFR, and downstream signaling activation in malignant peripheral nerve sheath tumor. Neuro Oncol 11:725–736

    Article  PubMed  CAS  Google Scholar 

  24. Fraenzer JT, Pan H, Minimo L Jr et al (2003) Overexpression of the NF2 gene inhibits schwannoma cell proliferation through promoting PDGFR degradation. Int J Oncol 23:1493–1500

    PubMed  CAS  Google Scholar 

  25. Morrison H, Sperka T, Manent J et al (2007) Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Res 67:520–527

    Article  PubMed  CAS  Google Scholar 

  26. Lim JY, Kim H, Kim YH et al (2003) Merlin suppresses the SRE-dependent transcription by inhibiting the activation of Ras-ERK pathway. Biochem Biophys Res Commun 302:238–245

    Article  PubMed  CAS  Google Scholar 

  27. Chadee DN, Xu D, Hung G et al (2006) Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 103:4463–4468

    Article  PubMed  CAS  Google Scholar 

  28. Zhou L, Hanemann CO (2012) Merlin, a multi-suppressor from cell membrane to the nucleus. FEBS Lett 586:1403–1408

    Article  PubMed  CAS  Google Scholar 

  29. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  30. Peyssonnaux C, Eychene A (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93:53–62

    Article  PubMed  CAS  Google Scholar 

  31. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284

    Article  PubMed  CAS  Google Scholar 

  32. Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–319

    Article  PubMed  CAS  Google Scholar 

  33. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283:125–134

    Article  PubMed  CAS  Google Scholar 

  34. Fiirgaard B, Pedersen CB, Lundorf E (1997) The size of acoustic neuromas: CT and MRI. Neuroradiology 39:599–601

    Article  PubMed  CAS  Google Scholar 

  35. van Eijk R, Licht J, Schrumpf M et al (2011) Rapid KRAS, EGFR, BRAF and PIK3CA mutation analysis of fine needle aspirates from non-small-cell lung cancer using allele-specific qPCR. PLoS One 6:e17791

    Article  PubMed  Google Scholar 

  36. Saldanha G, Purnell D, Fletcher A et al (2004) High BRAF mutation frequency does not characterize all melanocytic tumor types. Int J Cancer 111:705–710

    Article  PubMed  CAS  Google Scholar 

  37. Ladanyi M, Pao W (2008) Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol 21(Suppl 2):S16–S22

    Article  PubMed  CAS  Google Scholar 

  38. Jancik S, Drabek J, Radzioch D et al (2010) Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010:150960

    Article  PubMed  Google Scholar 

  39. Ligresti G, Militello L, Steelman LS et al (2009) PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Cell Cycle 8:1352–1358

    Article  PubMed  CAS  Google Scholar 

  40. Endo K, Konishi A, Sasaki H et al (2005) Epidermal growth factor receptor gene mutation in non-small cell lung cancer using highly sensitive and fast TaqMan PCR assay. Lung Cancer 50:375–384

    Article  PubMed  Google Scholar 

  41. Boldrini L, Gisfredi S, Ursino S et al (2007) Mutational analysis in cytological specimens of advanced lung adenocarcinoma: a sensitive method for molecular diagnosis. J Thorac Oncol 2:1086–1090

    Article  PubMed  Google Scholar 

  42. Carotenuto P, Roma C, Rachiglio AM et al (2010) Detection of KRAS mutations in colorectal carcinoma patients with an integrated PCR/sequencing and real-time PCR approach. Pharmacogenomics 11:1169–1179

    Article  PubMed  CAS  Google Scholar 

  43. Smith GD, Zhou L, Rowe LR et al (2011) Allele-specific PCR with competitive probe blocking for sensitive and specific detection of BRAF V600E in thyroid fine-needle aspiration specimens. Acta Cytol 55:576–583

    Article  PubMed  CAS  Google Scholar 

  44. Jiang W, Wang W, Fu F et al (2012) A more sensitive platform for the detection of low-abundance BRAF(V600E) mutations. Mol Cell Biochem 366(1–2):49–58

    Article  PubMed  CAS  Google Scholar 

  45. Yancovitz M, Litterman A, Yoon J et al (2012) Intra- and inter-tumor heterogeneity of BRAF(V600E) mutations in primary and metastatic melanoma. PLoS One 7:e29336

    Article  PubMed  CAS  Google Scholar 

  46. Wong CW, Fan YS, Chan TL et al (2005) BRAF and NRAS mutations are uncommon in melanomas arising in diverse internal organs. J Clin Pathol 58:640–644

    Article  PubMed  CAS  Google Scholar 

  47. Zuidervaart W, Van NF, Stark M et al (2032) Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer 92:2032–2038

    Article  Google Scholar 

  48. Sturgis EM, Woll SS, Aydin F et al (1996) Epidermal growth factor receptor expression by acoustic neuromas. Laryngoscope 106:457–462

    Article  PubMed  CAS  Google Scholar 

  49. Prayson RA, Yoder BJ, Barnett GH (2007) Epidermal growth factor receptor is not amplified in schwannomas. Ann Diagn Pathol 11:326–329

    Article  PubMed  Google Scholar 

  50. Curto M, Cole BK, Lallemand D et al (2007) Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 177:893–903

    Article  PubMed  CAS  Google Scholar 

  51. Wallace AJ, Watson CJ, Oward E et al (2004) Mutation scanning of the NF2 gene: an improved service based on meta-PCR/sequencing, dosage analysis, and loss of heterozygosity analysis. Genet Test 8:368–380

    Article  PubMed  CAS  Google Scholar 

  52. Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2003) CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas. Clin Cancer Res 9:5601–5606

    PubMed  CAS  Google Scholar 

  53. Sastre L (2011) New DNA sequencing technologies open a promising era for cancer research and treatment. Clin Transl Oncol 13:301–306

    Article  PubMed  Google Scholar 

  54. Ku CS, Naidoo N, Wu M et al (2011) Studying the epigenome using next generation sequencing. J Med Genet 48:721–730

    Article  PubMed  CAS  Google Scholar 

  55. de Vries M, Hogendoorn PC, Briaire-de Bruijn I et al (2012) Intratumoral hemorrhage, vessel density, and the inflammatory reaction contribute to volume increase of sporadic vestibular schwannomas. Virchows Arch 460(6):629–636

    Article  PubMed  CAS  Google Scholar 

  56. Allen M, Louise JJ (2011) Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 223:162–176

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare there is no conflict of interest concerning materials or methods used in this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pancras C. W. Hogendoorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, M., Bruijn, I.Bd., Cleton-Jansen, AM. et al. Mutations affecting BRAF, EGFR, PIK3CA, and KRAS are not associated with sporadic vestibular schwannomas. Virchows Arch 462, 211–217 (2013). https://doi.org/10.1007/s00428-012-1342-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-012-1342-8

Keywords

Navigation