Skip to main content

Advertisement

Log in

Expression level of the mitotic checkpoint protein and G2–M cell cycle regulators and prognosis in gastrointestinal stromal tumors in the stomach

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The biological behavior of gastrointestinal stromal tumors (GISTs) ranges from benign to malignant, and the risk of an adverse outcome is correlated with the location of the primary tumor, tumor size, and mitotic counts. Cell cycle regulators are potentially associated with the tumorigenesis and progression of GISTs. Checkpoint with forkhead and ring finger (CHFR) functions as an important checkpoint protein in the early to mid-prophase to regulate mitosis. In this study, we evaluated the expression of CHFR and several cell cycle regulators, including cyclin A, cyclin B1, cdc2, and cdk2, by immunohistochemical staining in 53 cases of primary gastric GISTs, and compared the immunohistochemical results with the clinicopathological factors or the GIST risk grades as modified by Miettinen et al. Of the 53 cases, 18 (34%) showed decreased nuclear CHFR expression. Decreased CHFR expression was correlated with higher mitotic counts [>5/50 high-power fields (HPFs)] (p = 0.039) and a high-risk grade (p = 0.0475), but not with expression of other cell cycle regulators. Higher cyclin A labeling index (LI, >1.5%), cyclin B1 LI (>0.25%), cdc2 LI (>1.16%), Ki-67 LI (>4.9%), mitotic counts (>5/50 HPF) and high-risk grade were each associated with shorter disease-free survival (p = 0.0017, p = 0.003, p = 0.0471, p = 0.002, p < 0.001, and p = 0.0017, respectively). Our results suggest that modified risk grade and increased expression of G2–M regulators such as cyclin A, cyclin B1, and cdc2 are useful for predicting the biological behavior of gastric GISTs. In addition, decreased CHFR expression may play a role in increased proliferative activity of higher grade GISTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fletcher CD, Bermann JJ, Corless C et al (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33:459–465

    Article  PubMed  Google Scholar 

  2. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23:70–83

    Article  PubMed  Google Scholar 

  3. Lasota J, Miettinen M (2006) KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol 23:91–102

    Article  PubMed  Google Scholar 

  4. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  PubMed  CAS  Google Scholar 

  5. Heinrich MC, Corless CL, Duensing A et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:708–710

    Article  PubMed  CAS  Google Scholar 

  6. Hirota S, Ohashi A, Nishida T et al (2003) Gain-of function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125:660–667

    Article  PubMed  CAS  Google Scholar 

  7. Yamamoto H, Oda Y, Kawaguchi K et al (2004) c-kit and PDGFRA mutations in extragastrointestinal stromal tumor (gastrointestinal stromal tumor of the soft tissue). Am J Surg Pathol 28:479–488

    Article  PubMed  Google Scholar 

  8. Miettinen M, Sobin LH, Lasota J (2005) Gastrointestinal stromal tumors of the stomach. A clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow up. Am J Surg Pathol 29:52–68

    Article  PubMed  Google Scholar 

  9. Schimieder M, Wolf S, Danner B et al (2008) p16 expression differentiates high-risk gastrointestinal stromal tumor and predicts poor outcome. Neoplasia 10(10):1154–1625

    Google Scholar 

  10. Schneider-Stock R, Boltze C, Lasota J et al (2003) High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol 21(9):1688–1697

    Article  PubMed  CAS  Google Scholar 

  11. Haller F, Lobke C, Ruschhaoupt M et al (2008) Loss of 9p leads to p16INK4A down-regulation and enables RB/E2F1-dependent cell cycle promotion in gastrointestinal stromal tumors (GISTs). J Pathol 215:253–262

    Article  PubMed  CAS  Google Scholar 

  12. Scolnick DM, Halazonetis TD (2000) Chfr defines a mitotic stress check-point that delays entry into metaphase. Nature 406:430–435

    Article  PubMed  CAS  Google Scholar 

  13. Summes MK, Bothos J, Halazonetis TD (2005) The CHFR mitotic checkpoint protein delays cell cycle progression by excluding cyclin B1 from the nucleus. Oncogene 24:2589–2598

    Article  Google Scholar 

  14. Kang D, Chen J, Wong J et al (2002) The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol 56:249–259

    Article  Google Scholar 

  15. Ogi K, Toyota M, Mita H et al (2005) Small interfering RNA-induced CHFR silencing sensitizes oral squamous cell cancer cells to microtubule inhibitors. Cancer Biol Ther 4:773–780

    Article  PubMed  CAS  Google Scholar 

  16. Satoh A, Toyota M, Itoh F et al (2003) Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res 63:8606–8613

    PubMed  CAS  Google Scholar 

  17. Mizuno K, Osada H, Konishi H et al (2002) Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21:2328–2333

    Article  PubMed  CAS  Google Scholar 

  18. Erson AE, Petty EM (2004) CHFR-associated early G2/M checkpoint defects in breast cancer cells. Mol Carcinog 39:26–33

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura N, Yamamoto H, Yao T et al (2005) Prognostic significance of abnormalities of cell-cycle regulatory proteins in gastrointestinal stromal tumor and relevance of the risk-grading system. Hum Pathol 36:828–837

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi C, Oda Y, Takahira T et al (2006) Aberrant expression of CHFR in malignant peripheral nerve sheath tumors. Mod Pathol 19:524–532

    Article  PubMed  CAS  Google Scholar 

  21. Daniels MJ, Marson A, Venkitaraman AR (2004) PML bodies control the nuclear dynamics and function of the CHFR mitotic checkpoint protein. Nat Struct Mol Biol 11:1114–1121

    Article  PubMed  CAS  Google Scholar 

  22. Toyota M, Sasaki Y, Satoh A et al (2003) Epigenetic inactivation of CHFR in human tumors. Proc Nati Acad Sci U S A 100:7818–7823

    Article  CAS  Google Scholar 

  23. Igarashi S, Suzuki H, Niinuma T et al (2010) A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointesinal stromal tumors. Clin Cancer Res 16:5114–4123

    Article  Google Scholar 

  24. Soutto M, Peng D, Razvi M et al (2010) Epigenetic and genetic silencing of CHFR in esophageal adenocarcinomas. Cancer 116:4033–4042

    Article  PubMed  CAS  Google Scholar 

  25. Marumoto T, Hirota T, Morisaki T et al (2002) Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7:1173–1182

    Article  PubMed  CAS  Google Scholar 

  26. Hirota T, Kunitoku N, Sasayama T et al (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114:585–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by the Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, Tokyo, Japan (Grant Number 22790346; H. Yamamoto).

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinao Oda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, A., Yamamoto, H., Imamura, M. et al. Expression level of the mitotic checkpoint protein and G2–M cell cycle regulators and prognosis in gastrointestinal stromal tumors in the stomach. Virchows Arch 460, 163–169 (2012). https://doi.org/10.1007/s00428-011-1181-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-011-1181-z

Keywords

Navigation