Skip to main content

Advertisement

Log in

Murine immune response induced by Leishmania major during the implantation of paraffin tablets

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

We carried out a model of chronic inflammation using a subcutaneous paraffin tablet in mice experimentally infected with Leishmania major. It was previously reported that the parasite load following paraffin implantation occurred at a peak of 21 days in both BALB/c and C57BL/6 mice. At the present study, we have investigated what cytokines and chemokines are directly related to the parasite load in C57BL/6 mice. All mice were divided in four groups: mice implanted with paraffin tablets; mice experimentally infected with L. major; mice implanted with paraffin tablets and experimentally infected with L. major; and mice submitted only to the surgery were used for the Real-Time Polymerase Chain Reaction (RT-PCR) controls. Fragments of skin tissue and the tissue surrounding the paraffin tablets (inflammatory capsule) were collected for histopathology and RT-PCR studies. By 21 days, a diffuse chronic inflammatory reaction was mainly observed in the deep dermis where macrophages parasitized with Leishmania amastigotes were also found. RT-PCR analysis has shown that BALB/c mice showed strong IL-4 and IL-10 mRNA expression than controls with very little expression of IFN-γ. In contrast, both IFN-γ and IL-10 mRNA was found in higher levels in C57BL/6 animals. Moreover, in C57BL/6 mice the expression of chemokines mRNA of CCL3/MIP-1α was more highly expressed than CCL2/MCP-1. We conclude that the Th1 immune response C57BL/6 did not change to a Th2 response, even though C57BL/6 animals presented higher parasitism than BALB/c mice 21 days after infection and paraffin implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander J, Russell DG (1992) The interaction of Leishmania species with macrophages. Adv Parasitol 31:175–254. doi:10.1016/S1471-4922(02)02352-8

    Article  PubMed  CAS  Google Scholar 

  2. Bogdan C, Donhauser N, Döring R, Röllinghoff M, Diefenbach A, Rittig MG (2000) Fibroblasts as host cells in latent leishmaniosis. J Exp Med 191:2121–2130. doi:10.1016/j.ijid.2008.11.008

    Article  PubMed  CAS  Google Scholar 

  3. Diefenbach A, Schindler H, Donhauser N, Lorenz E, Laskay T, MacMicking J, Rollinghoff M, Gresser I, Bogdan C (1998) Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity 8:77–87. doi:10.1016/S1074-7613(00)80460-4

    Article  PubMed  CAS  Google Scholar 

  4. Bogdan C, Rollinghoff M (1998) The immune response to Leishmania: mechanisms of parasite control and evasion. Int J Parasitol 28:121–134. doi:10.1016/S0020-7519(97)00169-0

    Article  PubMed  CAS  Google Scholar 

  5. Vester B, Muller K, Solbach W, Laskay T (1999) Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect Immun 67:3155–3159

    PubMed  CAS  Google Scholar 

  6. Moll H (2000) The role of dendritic cells at the early stages of Leishmania infection. Adv Exp Med Biol 479:163–173. doi:10.1007/0-306-46831-X_14

    Article  PubMed  CAS  Google Scholar 

  7. Von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC (1998) Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J Exp Med 188:1547–1552

    Article  Google Scholar 

  8. Liew FY, Li Y, Millott S (1990) Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 145:4306–4310

    PubMed  CAS  Google Scholar 

  9. Ritter U, Korner H (2002) Divergent expression of inflammatory dermal chemokines in cutaneous leishmaniasis. Parasite Immunol 24:295–301

    Article  PubMed  CAS  Google Scholar 

  10. Ashford RW (2000) The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30:1269–1281. doi:10.1016/S0020-7519(00)00136-3

    Article  PubMed  CAS  Google Scholar 

  11. Silveira FT, Lainson R, Corbett CE (2005) Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 100:525–534

    Article  PubMed  Google Scholar 

  12. Sousa AQ, Pompeu MML, Sólon FRN, Frutuoso MS, Teixeira MJ, Silva TMJ (2006) Disseminated cutaneous leishmaniasis: a patient with 749 lesions. Braz J Infect Dis 10:230–230

    PubMed  Google Scholar 

  13. Roychoudhury K, Roy S (2004) Role of chemokines in Leishmania infection. Curr Mol Med 4:691–696

    Article  PubMed  CAS  Google Scholar 

  14. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7:243.1–243.10. doi: 10.1186/gb-2006-7-12-243

  15. Scott P (1991) IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol 147:3149–3155

    PubMed  CAS  Google Scholar 

  16. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. doi:10.1038/nri1733

    Article  PubMed  CAS  Google Scholar 

  17. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    Article  PubMed  CAS  Google Scholar 

  18. Tafuri WL, Melo MN, Paiva MC, Mosser DM, Tafuri WL (2000) Kinetics of an experimental inflammatory reaction induced by Leishmania major during the implantation of paraffin tablets in mice. Virchows Arch 437:429–435. doi:10.1007/s004280000231

    Article  PubMed  CAS  Google Scholar 

  19. Murray HW (1994) Blood monocytes: differing effector role in experimental visceral versus cutaneous leishmaniasis. Parasitol Today 10:220–223. doi:10.1016/0169-4758(94)90117-1

    Article  PubMed  CAS  Google Scholar 

  20. Vieira LQ, Goldschmidt M, Nashleanas M, Pfeffer K, Mak T, Scott P (1996) Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. J Immunol 157:827–835

    PubMed  CAS  Google Scholar 

  21. Bailey PJ (1988) Sponge implants as models. Methods Enzymol 162:327–334

    Article  PubMed  CAS  Google Scholar 

  22. Yang Z, Mosser DM, Zhang X (2007) Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages. J Immunol 178:1077–1085

    PubMed  CAS  Google Scholar 

  23. Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858. doi:10.1038/nri933

    Article  PubMed  CAS  Google Scholar 

  24. Kane MM, Mosser MD (2001) The role of IL-10 in promoting disease progression in leishmaniasis. J Immunol 166:1141–1147

    PubMed  CAS  Google Scholar 

  25. Anderson CF, Oukka M, Kuchroo VJ, Sacks D (2007) CD4(+)CD25(-)Foxp3(-) Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J Exp Med 204:285–297. doi:10.1084/jem.20061886

    Article  PubMed  CAS  Google Scholar 

  26. Anderson CF, Mendez S, Sacks DL (2005) Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol 174:2934–2941

    PubMed  CAS  Google Scholar 

  27. Scharton-Kersten T, Scott P (1995) The role of the innate immune response in Th1 cell development following Leishmania major infection. J Leukoc Biol 57:515–522

    PubMed  CAS  Google Scholar 

  28. Matte C, Olivier M (2002) Leishmania-induced cellular recruitment during the early inflammatory response: modulation of proinflammatory mediators. J Infect Dis 185:673–681

    Article  PubMed  CAS  Google Scholar 

  29. Barbi J, Ogumu S, Rosas LE, Carlson T, Lu B, Gerard C, Lezama-Davila CM, Satoskar AR (2007) Lack of CXCR3 delays the development of hepatic inflammation but does not impair resistance to Leishmania donovani. J Infect Dis 195:1713–1717

    Article  PubMed  CAS  Google Scholar 

  30. Daly C, Rollins BJ (2003) Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation 10:247–257

    PubMed  CAS  Google Scholar 

  31. Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol Rev 213:159–179. doi:10.1111/j.1600-065X.2006.00432.x

    Article  PubMed  CAS  Google Scholar 

  32. Aliberti J, Reis e Sousa C, Schito M, Hieny S, Wells T, Huffnagle GB, Sher A (2000) CCR5 provides a signal for microbial induced production of IL-12 by CD8 alpha + dendritic cells. Nat Immunol 1:83–87

    Article  PubMed  CAS  Google Scholar 

  33. Santiago HC, Oliveira CF, Santiago L, Ferraz FO, de Souza DG, de-Freitas LA, Afonso LC, Teixeira MM, Gazzinelli RT, Vieira LQ (2004) Involvement of the chemokine RANTES (CCL5) in resistance to experimental infection with Leishmania major. Infect Immun 72:4918–4923. doi:10.1128/IAI.72.8.4918-4923.2004

    Article  PubMed  CAS  Google Scholar 

  34. Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043

    PubMed  CAS  Google Scholar 

  35. Sato N, Ahuja SK, Quinones M, Kostecki V, Reddick RL, Melby PC, Kuziel WA, Ahuja SS (2000) CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, b cell outgrowth, and sustained neutrophilic inflammation. J Exp Med 192:205–218

    Article  PubMed  CAS  Google Scholar 

  36. Conrad SM, Strauss-Ayali D, Field AE, Mack M, Mosser DM (2007) Leishmania-derived murine monocyte chemoattractant protein 1 enhances the recruitment of a restrictive population of CC chemokine receptor 2-positive macrophages. Infect Immun 75:653–665. doi:10.1128/IAI.01314-06

    Article  PubMed  CAS  Google Scholar 

  37. Ritter U, Moll H (2000) Monocyte chemotactic protein-1 stimulates the killing of Leishmania major by human monocytes, acts synergistically with IFN-gamma and is antagonized by IL-4. Eur J Immunol 30:3111–3120. doi:10.1002/1521-4141(200011)30:11<3111::AID-IMMU3111>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  38. Brandonisio O, Panaro MA, Fumarola I, Sisto M, Leogrande D, Acquafredda A, Spinelli D, Mitolo V (2002) Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages. Clin Exp Med 2:125–129. doi:10.1007/s102380200017

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Luiz Tafuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letícia Costa Reis, M., Martins Ferreira, V., Zhang, X. et al. Murine immune response induced by Leishmania major during the implantation of paraffin tablets. Virchows Arch 457, 609–618 (2010). https://doi.org/10.1007/s00428-010-0974-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-010-0974-9

Keywords

Navigation