Skip to main content

Advertisement

Log in

Genomic characteristics of soft tissue sarcomas

  • Review and Perspective
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Studies on the molecular mechanisms behind soft tissue sarcoma development have disclosed that these malignancies are as genetically heterogeneous as they are clinically and morphologically diverse. Much of the genetic information on soft tissue sarcomas is still limited to the genomic level, as detected by chromosome banding analysis or comparative genomic hybridization. Based on the results of such studies, soft tissue sarcomas may be broadly dichotomized into one group, accounting for approximately 20% of the cases, characterized by specific balanced translocations, and one group typically showing massive chromosomal rearrangements leading to recurrent, but non-specific, structural and numerical rearrangements. As summarized in this review, the genomic characterization of soft tissue sarcomas has not only provided cell biologists with decisive information on the parts of the genome that may harbor genes that are essential for tumor development but also given the clinicians involved in the management of these patients a valuable diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Gustav Fisher Verlag, Jena

    Google Scholar 

  2. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  PubMed  CAS  Google Scholar 

  3. Mitelman F, Johansson B, Mertens F (Eds) (2008) Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  4. Pinkel D, Albertson DG (2005) Array comparative genomic hybridization and its application in cancer. Nat Genet 37:S11–S17

    Article  PubMed  CAS  Google Scholar 

  5. Fletcher CDM, Unni KK, Mertens F (eds) (2002) World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. IARC, Lyon

    Google Scholar 

  6. Helman LJ, Meltzer P (2003) Mechanisms of sarcoma development. Nat Rev Cancer 3:685–694

    Article  PubMed  CAS  Google Scholar 

  7. Billing V, Mertens F, Domanski HD et al (2008) Deep-seated ordinary and atypical lipomas; histopathology, cytogenetics, clinical features, and outcome in 215 tumors of the extremity and trunk wall. J Bone Joint Surg Br 90:929–933

    Article  PubMed  CAS  Google Scholar 

  8. Berner J-M, Forus A, Elkahloun A et al (1996) Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosomes Cancer 17:254–259

    Article  PubMed  CAS  Google Scholar 

  9. Dei Tos AP, Doglioni C, Piccinin S et al (2000) Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumors. J Pathol 190:531–536

    Article  PubMed  CAS  Google Scholar 

  10. Hostein I, Pelmus M, Aurias A et al (2004) Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J Pathol 202:95–102

    Article  PubMed  CAS  Google Scholar 

  11. Italiano A, Bianchini L, Keslair F et al (2008) HMGA2 is the partner of MDM2 in well-differentiated and dedifferentiated liposarcomas whereas CDK4 belongs to a distinct inconsistent amplicon. Int J Cancer 122:2233–2241

    Article  PubMed  CAS  Google Scholar 

  12. Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636

    Article  PubMed  CAS  Google Scholar 

  13. Meza-Zepeda LA, Forus A, Lygren BO et al (2002) Positional cloning identifies a novel cyclophilin as a candidate amplified oncogene in 1q21. Oncogene 21:2261–2269

    Article  PubMed  CAS  Google Scholar 

  14. Micci F, Teixeira MR, Bjerkehagen B et al (2002) Characterization of supernumerary rings and giant marker chromosomes in well-differentiated lipomatous tumors by a combination of G-banding, CGH, M-FISH, and chromosome- and locus-specific FISH. Cytogenet Genome Res 97:13–19

    Article  PubMed  CAS  Google Scholar 

  15. Nilsson M, Meza-Zepeda LA, Mertens F et al (2004) Amplification of chromosome 1 sequences in lipomatous tumors and other sarcomas. Int J Cancer 109:363–369

    Article  PubMed  CAS  Google Scholar 

  16. Pedeutour F, Forus A, Coindre J-M et al (1999) Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24:30–41

    Article  PubMed  CAS  Google Scholar 

  17. Coindre J-M, Hostein I, Maire G et al (2004) Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol 203:822–830

    Article  PubMed  CAS  Google Scholar 

  18. Rieker RJ, Joos S, Bartsch C et al (2002) Distinct chromosomal imbalances in pleomorphic and in high-grade dedifferentiated liposarcomas. Int J Cancer 99:68–73

    Article  PubMed  CAS  Google Scholar 

  19. Turc-Carel C, Limon J, Dal Cin P et al (1986) Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 23:291–299

    Article  PubMed  CAS  Google Scholar 

  20. Crozat A, Åman P, Mandahl N et al (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363:640–644

    Article  PubMed  CAS  Google Scholar 

  21. Rabbitts TH, Forster A, Larson R et al (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 4:175–180

    Article  PubMed  CAS  Google Scholar 

  22. Panagopoulos I, Höglund M, Mertens F et al (1996) Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene 12:489–494

    PubMed  CAS  Google Scholar 

  23. Idbaih A, Coindre J-M, Derré J et al (2005) Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 85:176–181

    Article  PubMed  CAS  Google Scholar 

  24. Dahlén A, Fletcher CDM, Mertens F et al (2004) Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol 164:1645–1653

    PubMed  Google Scholar 

  25. Miettinen MM, el-Rifai W, Sarlomo-Rikala M et al (1997) Tumor size-related DNA copy number changes occur in solitary fibrous tumors but not in hemangiopericytomas. Mod Pathol 10:1194–1200

    PubMed  CAS  Google Scholar 

  26. Griffin CA, Hawkins AL, Dvorak C et al (1999) Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 59:2776–2780

    PubMed  CAS  Google Scholar 

  27. Lawrence B, Perez-Atayde A, Hibbard MK et al (2000) TPM3–ALK and TPM4–ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 157:377–384

    PubMed  CAS  Google Scholar 

  28. Patel AS, Murphy KM, Hawkins AL et al (2007) RANBP2 and CLTC are involved in ALK rearrangements in inflammatory myofibroblastic tumors. Cancer Genet Cytogenet 176:107–114

    Article  PubMed  CAS  Google Scholar 

  29. Knezevich SR, McFadden DE, Tao W et al (1998) A novel ETV6–NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187

    Article  PubMed  CAS  Google Scholar 

  30. Rubin BP, Chen C-J, Morgan TW et al (1998) Congenital mesoblastic nephroma t(12;15) is associated with ETV6–NTRK3 gene fusion. Cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153:1451–1458

    PubMed  CAS  Google Scholar 

  31. Mertens F, Fletcher CDM, Dal Cin P et al (1998) Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Genes Chromosomes Cancer 22:16–25

    Article  PubMed  CAS  Google Scholar 

  32. Örndal C, Rydholm A, Willén H et al (1994) Cytogenetic intratumor heterogeneity in soft tissue tumors. Cancer Genet Cytogenet 78:127–137

    Article  PubMed  Google Scholar 

  33. Willems SM, Debiec-Rychter M, Szuhai K et al (2006) Local recurrence of myxofibrosarcoma is associated with increase in tumor grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol 19:407–416

    Article  PubMed  Google Scholar 

  34. Ohguri T, Hisaoka M, Kawauchi S et al (2006) Cytogenetic analysis of myxoid liposarcoma and myxofibrosarcoma by array-based comparative genomic hybridisation. J Clin Pathol 59:978–983

    Article  PubMed  CAS  Google Scholar 

  35. Wettach GR, Boyd LJ, Lawce HJ et al (2008) Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet Cytogenet 182:140–143

    Article  PubMed  CAS  Google Scholar 

  36. Panagopoulos I, Storlazzi CT, Fletcher CDM et al (2004) The chimeric FUS/CREB3L2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 40:218–228

    Article  PubMed  CAS  Google Scholar 

  37. Guillou L, Benhattar J, Gengler C et al (2007) Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma. A study from the French sarcoma group. Am J Surg Pathol 31:1387–1402

    Article  PubMed  Google Scholar 

  38. Mertens F, Fletcher CDM, Antonescu CR et al (2005) Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest 85:408–415

    Article  PubMed  CAS  Google Scholar 

  39. Matsuyama A, Hisaoka M, Shimajiri S et al (2006) Molecular detection of FUS–CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol 30:1077–1084

    PubMed  Google Scholar 

  40. Mandahl N, Heim S, Willén H et al (1990) Supernumerary ring chromosome as the sole cytogenetic abnormality in a dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 49:273–275

    Article  PubMed  CAS  Google Scholar 

  41. Pedeutour F, Coindre J-M, Sozzi G et al (1994) Supernumerary ring chromosomes containing chromosome 17 sequences. A specific feature of dermatofibrosarcoma protuberans? Cancer Genet Cytogenet 76:1–9

    Article  PubMed  CAS  Google Scholar 

  42. O’Brien KP, Seroussi E, Dal Cin P et al (1998) Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer 23:187–193

    Article  PubMed  Google Scholar 

  43. Simon M-P, Pedeutour F, Sirvent N et al (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 15:95–98

    Article  PubMed  CAS  Google Scholar 

  44. Patel UK, Szabo SS, Hernandez VS et al (2008) Dermatofibrosarcoma protuberans COL1A1–PDGFB fusion is identified in virtually all dermatofibrosarcoma cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol 39:184–193

    Article  PubMed  CAS  Google Scholar 

  45. Kiuru-Kuhlefelt S, El-Rifai W, Fanburg-Smith J et al (2001) Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans. Cytogenet Cell Genet 92:192–195

    Article  PubMed  CAS  Google Scholar 

  46. Abbott JJ, Erickson-Johnson M, Wang X et al (2006) Gains of COL1A1–PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol 19:1512–1518

    PubMed  CAS  Google Scholar 

  47. Fletcher CDM, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050

    PubMed  CAS  Google Scholar 

  48. Chibon F, Mariani O, Derré J et al (2002) A subgroup of malignant fibrous histiocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet 139:24–29

    Article  PubMed  CAS  Google Scholar 

  49. Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759

    Article  PubMed  CAS  Google Scholar 

  50. Simons A, Schepens M, Jeuken J et al (2000) Frequent loss of 9p21 (p16INK4A) and other genomic imbalances in human malignant fibrous histiocytoma. Cancer Genet Cytogenet 118:89–98

    Article  PubMed  CAS  Google Scholar 

  51. Mandahl N, Fletcher CDM, Dal Cin P et al (2000) Comparative cytogenetic study of spindle cell and pleomorphic leiomyosarcomas of soft tissues: a report from the CHAMP Study Group. Cancer Genet Cytogenet 116:66–73

    Article  PubMed  CAS  Google Scholar 

  52. Wang R, Lu Y-J, Fisher C et al (2001) Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Genes Chromosomes Cancer 31:54–64

    Article  PubMed  Google Scholar 

  53. Chang A, Schuetze SM, Conrad EU III et al (2005) So-called “inflammatory leiomyosarcoma”: a series of 3 cases providing additional insights into a rare entity. Int J Surg Pathol 13:185–195

    Article  PubMed  Google Scholar 

  54. Larramendy ML, Kaur S, Svarvar C et al (2006) Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet Cytogenet 169:94–101

    Article  PubMed  CAS  Google Scholar 

  55. Meza-Zepeda LA, Kresse SH, Barragan-Polania AH et al (2006) Array comparative genomic hybridization reveals distinct DNA copy number differences between gastrointestinal stromal tumors and leiomyosarcomas. Cancer Res 66:8984–8993

    Article  PubMed  CAS  Google Scholar 

  56. Hu J, Rao UNM, Jasani S et al (2005) Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 161:20–27

    Article  PubMed  CAS  Google Scholar 

  57. Wang R, Titley JC, Lu Y-J et al (2003) Loss of 13q14-q21 and gain of 5p14-pter in the progression of leiomyosarcoma. Mod Pathol 16:778–785

    Article  PubMed  Google Scholar 

  58. Douglass EC, Shapiro DN, Valentine M et al (1993) Alveolar rhabdomyosarcoma with the t(2;13): cytogenetic findings and clinicopathologic correlations. Med Pediatr Oncol 21:83–87

    Article  PubMed  CAS  Google Scholar 

  59. Gordon T, McManus A, Anderson J et al (2001) Cytogenetic abnormalities in 42 rhabdomyosarcoma: a United Kingdom Cancer Cytogenetics Group study. Med Pediatr Oncol 36:259–267

    Article  PubMed  CAS  Google Scholar 

  60. Xia SJ, Pressey JG, Barr FG (2002) Molecular pathology of rhabdomyosarcoma. Cancer Biol Therapy 1:97–104

    CAS  Google Scholar 

  61. Barr FG (2001) Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20:5736–5746

    Article  PubMed  CAS  Google Scholar 

  62. Barr FG, Qualman SJ, Macris MH et al (2002) Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 62:4704–4710

    PubMed  CAS  Google Scholar 

  63. Davicioni E, Finckenstein FG, Shahbazian V et al (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66:6936–6946

    Article  PubMed  CAS  Google Scholar 

  64. Wachtel M, Dettling M, Koscielniak E et al (2004) Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64:5539–5545

    Article  PubMed  CAS  Google Scholar 

  65. Sorensen PHB, Lynch JC, Qualman SJ et al (2002) PAX3–FKHR and PAX7–FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol 20:2672–2679

    Article  PubMed  CAS  Google Scholar 

  66. Kullendorff CM, Donnér M, Mertens F et al (1998) Chromosomal aberrations in a consecutive series of childhood rhabdomyosarcoma. Med Pediatr Oncol 30:156–159

    Article  PubMed  CAS  Google Scholar 

  67. Bridge JA, Liu J, Weibolt V et al (2000) Novel genomic imbalances in embryonal rhabdomyosacoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study. Genes Chromosomes Cancer 27:337–344

    Article  PubMed  CAS  Google Scholar 

  68. Baumhoer D, Gunawan B, Becker H et al (2005) Comparative genomic hybridization in four angiosarcomas of the breast. Gynecol Oncol 97:348–352

    Article  PubMed  CAS  Google Scholar 

  69. Bottillo I, Ahlquist T, Brekke H et al (2008) Germline and somatic NF1 mutations in sporadic and NF1-associated malignant peripheral nerve sheath tumours. J Pathol, in press

  70. Berner J-M, Sorlie T, Mertens F et al (1999) Chromosome band 9p21 is frequently altered in malignant peripheral nerve sheath tumours: studies of CDKN2A and other genes of the pRB pathway. Genes Chromosomes Cancer 26:151–160

    Article  PubMed  CAS  Google Scholar 

  71. Bridge RS Jr, Bridge JA, Neff JR et al (2004) Recurrent chromosomal imbalances and structurally abnormal breakpoints within complex karyotypes of malignant peripheral nerve sheath tumour and malignant triton tumour: a cytogenetic and molecular cytogenetic study. J Clin Pathol 57:1172–1178

    Article  PubMed  CAS  Google Scholar 

  72. Jhanwar SC, Chen Q, Li FP et al (1994) Cytogenetic analysis of soft tissue sarcomas. Recurrent chromosome abnormalities in malignant peripheral nerve sheath tumors (MPNST). Cancer Genet Cytogenet 78:138–144

    Article  PubMed  CAS  Google Scholar 

  73. Mantripragada KK, Spurlock G, Kluwe L et al (2008) High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res 14:1015–1024

    Article  PubMed  CAS  Google Scholar 

  74. Mertens F, Dal Cin P, De Wever I et al (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP Study Group. J Pathol 190:31–38

    Article  PubMed  CAS  Google Scholar 

  75. Storlazzi CT, Brekke HR, Mandahl N et al (2006) Identification of a novel amplicon at distal 17q containing the BIRC5/SURVIVIN gene in malignant peripheral nerve sheath tumours. J Pathol 209:492–500

    Article  PubMed  CAS  Google Scholar 

  76. Antonescu CR, Dal Cin P, Nafa K et al (2007) EWSR1–CREB is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 46:1051–1060

    Article  PubMed  CAS  Google Scholar 

  77. Hallor KH, Micci F, Meis-Kindblom JM et al (2007) Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 251:158–163

    Article  PubMed  CAS  Google Scholar 

  78. Limon J, Mrozek K, Mandahl N et al (1991) Cytogenetics of synovial sarcoma: presentation of ten new cases and review of the literature. Genes Chromosomes Cancer 3:338–345

    Article  PubMed  CAS  Google Scholar 

  79. Mandahl N, Limon J, Mertens F et al (1995) Nonrandom secondary chromosome aberrations in synovial sarcomas with t(X;18). Int J Oncol 7:495–499

    Google Scholar 

  80. Panagopoulos I, Mertens F, Isaksson M et al (2001) Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer 31:362–372

    Article  PubMed  CAS  Google Scholar 

  81. Turc-Carel C, Dal Cin P, Limon J et al (1987) Involvement of chromosome X in primary cytogenetic change in human neoplasia: nonrandom translocation in synovial sarcoma. Proc Natl Acad Sci USA 84:1981–1985

    Article  PubMed  CAS  Google Scholar 

  82. Ladanyi M, Antonescu CR, Leung DH et al (2002) Impact of SYT–SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res 62:135–140

    PubMed  CAS  Google Scholar 

  83. Guillou L, Benhattar J, Binichon F et al (2004) Histologic grade, but not SYT–SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 22:4040–4050

    Article  PubMed  Google Scholar 

  84. Amary MFC, Berisha F, Del Carlo Bernardi F et al (2007) Detection of SS18–SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Mod Pathol 20:482–496

    Article  PubMed  CAS  Google Scholar 

  85. Bridge JA, Borek DA, Neff JR et al (1990) Chromosomal abnormalities in clear cell sarcoma. Implications for histogenesis. Am J Clin Pathol 93:26–31

    PubMed  CAS  Google Scholar 

  86. Panagopoulos I, Mertens F, Debiec-Rychter M et al (2002) Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of the tendons and aponeuroses. Int J Cancer 99:560–567

    Article  PubMed  CAS  Google Scholar 

  87. Antonescu CR, Nafa K, Segal NH et al (2006) EWS–CREB1: a recurrent variant fusion in clear cell sarcoma—association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res 12:5356–5362

    Article  PubMed  CAS  Google Scholar 

  88. Gerald WL, Haber DA (2005) The EWS–WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol 15:197–205

    Article  PubMed  CAS  Google Scholar 

  89. Lae ME, Roche PC, Jin L et al (2002) Desmoplastic small round cell tumor. A clinicopathologic, immunohistochemical, and molecular study of 32 tumors. Am J Surg Pathol 26:823–835

    Article  PubMed  Google Scholar 

  90. Lualdi E, Modena P, Debiec-Rychter M et al (2004) Molecular cytogenetic characterization of proximal-type epithelioid sarcoma. Genes Chromosomes Cancer 41:283–290

    Article  PubMed  CAS  Google Scholar 

  91. Modena P, Lualdi E, Facchinetti F et al (2005) SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 65:4012–4019

    Article  PubMed  CAS  Google Scholar 

  92. Panagopoulos I, Mertens F, Isaksson M et al (2002) Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 35:340–352

    Article  PubMed  CAS  Google Scholar 

  93. Sjögren H, Meis-Kindblom JM, Örndal C et al (2003) Studies on the molecular pathogenesis of extraskeletal myxoid chondrosarcoma—cytogenetic, molecular genetic, and cDNA microarray analyses. Am J Pathol 162:781–792

    PubMed  Google Scholar 

  94. Hisaoka M, Hashimoto H (2005) Extraskeletal myxoid chondrosarcoma: updated clinicopathological and molecular genetic characteristics. Pathol Int 55:453–463

    Article  PubMed  Google Scholar 

  95. Ladanyi M, Lui MY, Antonescu CR et al (2001) The der(17) t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 20:48–57

    Article  PubMed  CAS  Google Scholar 

  96. Folpe AL, Deyrup AT (2006) Alveolar soft-part sarcoma: a review and update. J Clin Pathol 59:1127–1132

    Article  PubMed  CAS  Google Scholar 

  97. Mertens F, Strömberg U, Rydholm A et al (2006) Prognostic significance of chromosome aberrations in high-grade soft tissue sarcomas. J Clin Oncol 24:315–320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the Swedish Cancer Society, the Swedish Children’s Cancer Fund, and the Swedish Research Council.

Conflicts of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Mertens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertens, F., Panagopoulos, I. & Mandahl, N. Genomic characteristics of soft tissue sarcomas. Virchows Arch 456, 129–139 (2010). https://doi.org/10.1007/s00428-009-0736-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-009-0736-8

Keywords

Navigation