Skip to main content

Advertisement

Log in

Immunophenotyping and oncogene amplifications in tumors of the papilla of Vater

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Carcinomas of the ampulla of Vater are rare and assumed to generally arise from preexisting adenomas (adenoma–carcinoma sequence). Histologically, distinct subtypes can be distinguished that were shown to differ significantly in terms of clinical outcome. Since pathologists usually receive bioptic tissue samples of ampullary tumors obtained during endoscopy, accurate classification of carcinoma subtypes can sometimes be difficult on morphological criteria alone. We therefore performed immunohistochemistry using a panel of established marker proteins (CK7, CK20, p21, p27, ESA, bax, and ephrin-B2) on 175 carcinoma, 111 adenoma, and 152 normal mucosa specimens of the ampulla of Vater and identified distinct immunoprofiles for every carcinoma subtype. Fluorescence in situ hybridization analyses of therapeutic target genes (c-myc, EGFR1, CCND1, HER2) found CCND1 to represent the most frequently amplified gene in our series (7.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allescher HD (1989) Papilla of Vater: structure and function. Endoscopy 21(Suppl 1):324–329

    Article  PubMed  Google Scholar 

  2. Neoptolemos JP, Talbot IC, Carr-Locke DL et al (1987) Treatment and outcome in 52 consecutive cases of ampullary carcinoma. Br J Surg 74:957–961

    Article  PubMed  CAS  Google Scholar 

  3. Albores-Saavedra J, Scoazec JC, Wittekind C et al (2000) Tumours of the gallbladder and extrahepatic bile ducts. In: Hamilton SR, Aaltonen LA (eds) World Health Organization classification of tumours: pathology and genetics of tumours of the digestive system. IARC, Lyon, pp 203–218

    Google Scholar 

  4. Wright NH, Howe JR, Rossini FP et al (2000) Tumours of the small intestine. In: Hamilton SR, Aaltonen LA (eds) World Health Organization classification of tumours: pathology and genetics of tumours of the digestive system. IARC, Lyon, pp 69–92

    Google Scholar 

  5. Fischer HP, Zhou H (2004) Pathogenesis of carcinoma of the papilla of Vater. J Hepatobiliary Pancreat Surg 11:301–309

    Article  PubMed  Google Scholar 

  6. Howe JR, Klimstra DS, Moccia RD et al (1998) Factors predictive of survival in ampullary carcinoma. Ann Surg 228:87–94

    Article  PubMed  CAS  Google Scholar 

  7. Kaiser A, Jurowich C, Schonekas H et al (2002) The adenoma–carcinoma sequence applies to epithelial tumours of the papilla of Vater. Z Gastroenterol 40:913–920

    Article  PubMed  CAS  Google Scholar 

  8. Takashima M, Ueki T, Nagai E et al (2000) Carcinoma of the ampulla of Vater associated with or without adenoma: a clinicopathologic analysis of 198 cases with reference to p53 and Ki-67 immunohistochemical expressions. Mod Pathol 13:1300–1307

    Article  PubMed  CAS  Google Scholar 

  9. Todoroki T, Koike N, Morishita Y et al (2003) Patterns and predictors of failure after curative resections of carcinoma of the ampulla of Vater. Ann Surg Oncol 10:1176–1183

    Article  PubMed  Google Scholar 

  10. Bouvet M, Gamagami RA, Gilpin EA et al (2000) Factors influencing survival after resection for periampullary neoplasms. Am J Surg 180:13–17

    Article  PubMed  CAS  Google Scholar 

  11. Chang MC, Chang YT, Tien YW et al (2005) Distinct chromosomal aberrations of ampulla of Vater and pancreatic head cancers detected by laser capture microdissection and comparative genomic hybridization. Oncol Rep 14:867–872

    PubMed  Google Scholar 

  12. Yeo CJ, Cameron JL, Sohn TA et al (1997) Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg 226:248–257; discussion 57–60

    Article  PubMed  CAS  Google Scholar 

  13. Di Giorgio A, Alfieri S, Rotondi F et al (2005) Pancreatoduodenectomy for tumors of Vater’s ampulla: report on 94 consecutive patients. World J Surg 29:513–518

    Article  PubMed  Google Scholar 

  14. Sperti C, Pasquali C, Piccoli A et al (1994) Radical resection for ampullary carcinoma: long-term results. Br J Surg 81:668–671

    Article  PubMed  CAS  Google Scholar 

  15. Talamini MA, Moesinger RC, Pitt HA et al (1997) Adenocarcinoma of the ampulla of Vater. A 28-year experience. Ann Surg 225:590–599; discussion 9–600

    Article  PubMed  CAS  Google Scholar 

  16. Beghelli S, Orlandini S, Moore PS et al (2002) Ampulla of vater cancers: T-stage and histological subtype but not Dpc4 expression predict prognosis. Virchows Arch 441:19–24

    Article  PubMed  CAS  Google Scholar 

  17. Westgaard A, Tafjord S, Farstad IN et al (2008) Pancreatobiliary versus intestinal histologic type of differentiation is an independent prognostic factor in resected periampullary adenocarcinoma. BMC Cancer 8:170

    Article  PubMed  Google Scholar 

  18. Albores-Saavedra J, Henson DE, Klimstra DS (2000) Tumors of the gallbladder, extrahepatic bile ducts, and ampulla of Vater. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  19. Fischer HP, Zhou H (2003) [Pathogenesis and histomorphology of ampullary carcinomas and their precursor lesions. Review and individual findings]. Pathologe 24:196–203

    PubMed  Google Scholar 

  20. Kimura W, Futakawa N, Yamagata S et al (1994) Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res 85:161–166

    PubMed  CAS  Google Scholar 

  21. Matsubayashi H, Watanabe H, Yamaguchi T et al (1999) Differences in mucus and K-ras mutation in relation to phenotypes of tumors of the papilla of vater. Cancer 86:596–607

    Article  PubMed  CAS  Google Scholar 

  22. Zlobec I, Minoo P, Baker K et al (2007) Loss of APAF-1 expression is associated with tumour progression and adverse prognosis in colorectal cancer. Eur J Cancer 43:1101–1107

    Article  PubMed  CAS  Google Scholar 

  23. Zlobec I, Vuong T, Hayashi S et al (2007) A simple and reproducible scoring system for EGFR in colorectal cancer: application to prognosis and prediction of response to preoperative brachytherapy. Br J Cancer 96:793–800

    Article  PubMed  CAS  Google Scholar 

  24. Zlobec I, Lugli A (2008) Prognostic and predictive factors in colorectal cancer. A critical review. J Clin Pathol 61:561–569

    PubMed  CAS  Google Scholar 

  25. Barclay TH, Schapira DV (1983) Malignant tumors of the small intestine. Cancer 51:878–881

    Article  PubMed  CAS  Google Scholar 

  26. Santoro E, Sacchi M, Scutari F et al (1997) Primary adenocarcinoma of the duodenum: treatment and survival in 89 patients. Hepatogastroenterology 44:1157–1163

    PubMed  CAS  Google Scholar 

  27. Thomas RM, Sobin LH (1995) Gastrointestinal cancer. Cancer 75:154–170

    Article  PubMed  CAS  Google Scholar 

  28. Weiss NS, Yang CP (1987) Incidence of histologic types of cancer of the small intestine. J Natl Cancer Inst 78:653–656

    PubMed  CAS  Google Scholar 

  29. Kozuka S, Tsubone M, Yamaguchi A et al (1981) Adenomatous residue in cancerous papilla of Vater. Gut 22:1031–1034

    Article  PubMed  CAS  Google Scholar 

  30. Perzin KH, Bridge MF (1982) Adenomatous and carcinomatous changes in hamartomatous polyps of the small intestine (Peutz–Jeghers syndrome): report of a case and review of the literature. Cancer 49:971–983

    Article  PubMed  CAS  Google Scholar 

  31. Sellner F (1990) Investigations on the significance of the adenoma–carcinoma sequence in the small bowel. Cancer 66:702–715

    Article  PubMed  CAS  Google Scholar 

  32. Perzin KH, Bridge MF (1981) Adenomas of the small intestine: a clinicopathologic review of 51 cases and a study of their relationship to carcinoma. Cancer 48:799–819

    Article  PubMed  CAS  Google Scholar 

  33. Fritz B, Schubert F, Wrobel G et al (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62:2993–2998

    PubMed  CAS  Google Scholar 

  34. Hall M, Peters G (1996) Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 68:67–108

    Article  PubMed  CAS  Google Scholar 

  35. Kim SH, Lewis JJ, Brennan MF et al (1998) Overexpression of cyclin D1 is associated with poor prognosis in extremity soft-tissue sarcomas. Clin Cancer Res 4:2377–2382

    PubMed  CAS  Google Scholar 

  36. Tornillo L, Duchini G, Carafa V et al (2005) Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab Invest 85:921–931

    Article  PubMed  CAS  Google Scholar 

  37. Al-Kuraya K, Novotny H, Bavi P et al (2007) HER2, TOP2A, CCND1, EGFR and C-MYC oncogene amplification in colorectal cancer. J Clin Pathol 60:768–772

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Baumhoer.

Additional information

Petra Ruemmele and Luigi M. Terracciano shared senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumhoer, D., Zlobec, I., Tornillo, L. et al. Immunophenotyping and oncogene amplifications in tumors of the papilla of Vater. Virchows Arch 453, 579–588 (2008). https://doi.org/10.1007/s00428-008-0669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0669-7

Keywords

Navigation