Skip to main content

Advertisement

Log in

Activation of extracellular regulated kinases (ERK1/2) but not AKT predicts poor prognosis in colorectal carcinoma and is associated with k-ras mutations

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Signal transduction and modulation represent central mechanisms in cellular processes such as cell-cycle regulation, oncogenesis, and apoptosis. The aim of this study was to determine the prognostic relevance of two kinases important in the regulation of cell proliferation and apoptosis in 135 colorectal cancer cases: AKT and extracellular regulated kinases (ERK1/2). We investigated the relationship of phospho-ERK1/2 (pERK1/2) and phospho-AKT (pAKT) with associated parameters (EGFR, COX-2, cyclin-D1), proliferative activity (Ki-67), and apoptosis (TUNEL) using immunohistochemistry. Additionally, the k-ras gene was screened for mutations to determine its putative association with ERK1/2 activation. Activation of ERK1/2 but not AKT correlated statistically with the presence of k-ras mutations (P = 0.015). Survival analysis of phospho-ERK1/2 immunoexpression showed a significant correlation with decreased overall survival (OS). The multivariate Cox regression analysis identified pERK1/2 as an independent prognostic parameter (P = 0.005). Activation of ERK1/2 in colorectal cancer may indicate aggressive tumor behavior and may constitute an independent prognostic factor. Furthermore, our data suggest that mutations of the k-ras oncogene may induce activation of ERK1/2. We propose immunohistochemical determination of pERK1/2 status as a promising candidate for the identification of high-risk patients who would benefit from new anticancer drugs targeting the ERK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst 90:675–684

    Article  PubMed  CAS  Google Scholar 

  2. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285

    Article  PubMed  CAS  Google Scholar 

  3. Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90:5889–5892

    Article  PubMed  CAS  Google Scholar 

  4. Bubendorf L, Nocito A, Moch H, Sauter G (2005) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195:72–79

    Article  Google Scholar 

  5. Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  PubMed  CAS  Google Scholar 

  6. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  PubMed  CAS  Google Scholar 

  7. Chan TO, Rittenhouse SE, Tsichlis PN (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68:965–1014

    Article  PubMed  CAS  Google Scholar 

  8. Chen DB, Davis JS (2003) Epidermal growth factor induces c-fos and c-jun mRNA via Raf-1/MEK1/ERK-dependent and -independent pathways in bovine luteal cells. Mol Cell Endocrinol 200:141–154

    Article  PubMed  CAS  Google Scholar 

  9. Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ (2005) The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut 54:1283–1286

    Article  PubMed  CAS  Google Scholar 

  10. Dai DL, Martinka M, Li G (2005) Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23:1473–1482

    Article  PubMed  CAS  Google Scholar 

  11. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  CAS  Google Scholar 

  12. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    PubMed  CAS  Google Scholar 

  13. Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6:322–327

    Article  PubMed  CAS  Google Scholar 

  14. Franke TF (1999) A difficult akt to follow. Neural Notes 5:3–7

    Google Scholar 

  15. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  PubMed  CAS  Google Scholar 

  16. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736

    Article  PubMed  CAS  Google Scholar 

  17. Givant-Horwitz V, Davidson B, Lazarovici P, Schaefer E, Nesland JM, Trope CG, Reich R (2003) Mitogen-activated protein kinases (MAPK) as predictors of clinical outcome in serous ovarian carcinoma in effusions. Gynecol Oncol 91:160–172

    Article  PubMed  CAS  Google Scholar 

  18. Hamilton SR, Aaltonen LA (2000) World Health Organization Classification of Tumours. Pathology and genetics of tumours of the digestive system. IARC Press, Lyon

    Google Scholar 

  19. Handra-Luca A, Bilal H, Bertrand JC, Fouret P (2003) Extra-cellular signal-regulated ERK-1/ERK-2 pathway activation in human salivary gland mucoepidermoid carcinoma: association to aggressive tumor behavior and tumor cell proliferation. Am J Pathol 163:957–967

    PubMed  CAS  Google Scholar 

  20. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M (1999) Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18:813–822

    Article  PubMed  CAS  Google Scholar 

  21. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M (1999) Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18:813–822

    Article  PubMed  CAS  Google Scholar 

  22. Itoh N, Semba S, Ito M, Takeda H, Kawata S, Yamakawa M (2002) Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 94:3127–3134

    Article  PubMed  CAS  Google Scholar 

  23. Khaleghpour K, Li Y, Banville D, Yu Z, Shen SH (2004) Involvement of the PI 3-kinase signaling pathway in progression of colon adenocarcinoma. Carcinogenesis 25:241–248

    Article  PubMed  CAS  Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  25. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271:20608–20616

    Article  PubMed  CAS  Google Scholar 

  26. Lee SH, Lee JW, Soung YH, Kim SY, Nam SW, Park WS, Kim SH, Yoo NJ, Lee JY (2004) Colorectal tumors frequently express phosphorylated mitogen-activated protein kinase. Acta Pathol Microbiol Immunol Scand 112:233–238

    CAS  Google Scholar 

  27. Milde-Langosch K, Bamberger AM, Rieck G, Grund D, Hemminger G, Muller V, Loning T (2005) Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer. Br J Cancer 92:2206–2215

    Article  PubMed  CAS  Google Scholar 

  28. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, Lee ST, Lee MH, Hahn JS, Ko YW (2003) Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17:995–997

    Article  PubMed  CAS  Google Scholar 

  29. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  30. Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, Hamid O, Varterasian M, Asbury P, Kaldjian EP, Gulyas S, Mitchell DY, Herrera R, Sebolt-Leopold JS, Meyer MB (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22:4456–4462

    Article  PubMed  CAS  Google Scholar 

  31. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  PubMed  CAS  Google Scholar 

  32. Sakakura C, Hagiwara A, Shirahama T, Nakanishi M, Yasuoka R, Fujita Y, Inazawa J, Abe T, Kohno M, Yamagishi H (1999) Infrequent activation of mitogen-activated protein kinase in human colon cancers. Hepatogastroenterology 46:2831–2834

    PubMed  CAS  Google Scholar 

  33. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    PubMed  CAS  Google Scholar 

  34. Schmitz KJ, Otterbach F, Callies R, Levkau B, Holscher M, Hoffmann O, Grabellus F, Kimmig R, Schmid KW, Baba HA (2004) Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol 17:15–21

    Article  PubMed  CAS  Google Scholar 

  35. Sebolt-Leopold JS (2000) Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 19:6594–6599

    Article  PubMed  CAS  Google Scholar 

  36. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  PubMed  CAS  Google Scholar 

  37. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152

    Article  PubMed  CAS  Google Scholar 

  38. Stewart BW, Kleihus P (2003) World cancer report. IARC Press, Lyon

    Google Scholar 

  39. Subbaramaiah K, Chung WJ, Dannenberg AJ (1998) Ceramide regulates the transcription of cyclooxygenase-2. Evidence for involvement of extracellular signal-regulated kinase/c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways. J Biol Chem 273:32943–32949

    Article  PubMed  CAS  Google Scholar 

  40. Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, Ma XL, Shelley SA, Jove R, Tsichlis PN, Nicosia SV, Cheng JQ (2001) AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 159:431–437

    PubMed  CAS  Google Scholar 

  41. Vogel US, Dixon RA, Schaber MD, Diehl RE, Marshall MS, Scolnick EM, Sigal IS, Gibbs JB (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335:90–93

    Article  PubMed  CAS  Google Scholar 

  42. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  43. Wolmark N, Bryant J, Smith R, Grem J, Allegra C, Hyams D, Atkins J, Dimitrov N, Oishi R, Prager D, Fehrenbacher L, Romond E, Colangelo L, Fisher B (1998) Adjuvant 5-fluorouracil and leucovorin with or without interferon alfa-2a in colon carcinoma: National Surgical Adjuvant Breast and Bowel Project protocol C-05. J Natl Cancer Inst 90:1810–1816

    Article  PubMed  CAS  Google Scholar 

  44. Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N, Dono K, Nakamori S, Umeshita K, Ito Y, Matsuura N, Monden M (2004) Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep 11:25–32

    PubMed  CAS  Google Scholar 

  45. Yamamoto S, Tomita Y, Hoshida Y, Morooka T, Nagano H, Dono K, Umeshita K, Sakon M, Ishikawa O, Ohigashi H, Nakamori S, Monden M, Aozasa K (2004) Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin Cancer Res 10:2846–2850

    Article  PubMed  CAS  Google Scholar 

  46. Yen A, Roberson MS, Varvayanis S, Lee AT (1998) Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 58:3163–3172

    PubMed  CAS  Google Scholar 

  47. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3:245–252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The technical assistance of Dorothe Möllmann, Caroline Stang, and Karin Scholz is gratefully acknowledged. K.J. Schmitz and J. Wohlschlaeger contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, K.J., Wohlschlaeger, J., Alakus, H. et al. Activation of extracellular regulated kinases (ERK1/2) but not AKT predicts poor prognosis in colorectal carcinoma and is associated with k-ras mutations. Virchows Arch 450, 151–159 (2007). https://doi.org/10.1007/s00428-006-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-006-0342-y

Keywords

Navigation