Skip to main content

Advertisement

Log in

Personalized medicine and development of targeted therapies: the upcoming challenge for diagnostic molecular pathology. A review

  • Review Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Due to continuous technical developments and new insights into the high complexity of many diseases, molecular pathology is a rapidly growing field gaining center stage in the clinical management of tumors as well as in the pharmaceutical development of new anti-cancer drugs. The application of novel compounds in clinical trials has revealed promising results; however, the current diagnostic procedures available for determining which patients will primarily benefit from rational tumor therapy are insufficient. To read a patient’s tissue as “deeply” as possible, in the future, gaining information on the morphology and on genetic, proteomic, and epigenetic alterations will be the upcoming task of surgical pathologists experienced in molecular diagnostics to provide the clinicians with information relevant for an individualized medicine. Among the different high-throughput technologies, DNA microarrays are now the first array approach close to enter routine diagnostics. Technically advanced and well-established microarray platforms can nowadays be evaluated by distinct bioinformatic tools capable of identifying both novel genes associated with disease development and clusters of genes predicting clinical outcome of an individual tumor. The automatic, highly parallel analysis of proteins and complex proteins lysates for early detection of cancers such as breast, prostate and ovary as proteomic patterns in the serum also appears at the horizon. In addition, an improved analysis of tumor samples via antibody or reverse-phase protein arrays is likely to provide the pathologist in the future with information about activated oncogenic signaling pathways and other cell functions, such as drug response or the potential to metastasize. While expression microarrays and proteomic analysis rely on relatively unstable material incompatible with paraffin-embedded tissue samples, an investigation of DNA methylation using specialized high-throughput platforms has revealed the potential of being used in future diagnostics. Each of these approaches on its own might not suffice to extract all information required for an efficient individualized diagnostics. Therefore, a “multiplex approach” combining the different biological levels DNA, RNA, and protein, may be necessary to functionally classify malignant tumors. This appears to become a major challenge for diagnostic pathologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adorjan P, Distler J, Lipscher E, Model F, Muller J, Pelet C, Braun A, Florl AR, Gutig D, Grabs G, Howe A, Kursar M, Lesche R, Leu E, Lewin A, Maier S, Muller V, Otto T, Scholz C, Schulz WA, Seifert HH, Schwope I, Ziebarth H, Berlin K, Piepenbrock C, Olek A (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30:e21

    Article  PubMed  Google Scholar 

  2. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–47

    Article  PubMed  CAS  Google Scholar 

  4. Baggerly KA, Morris JS, Edmonson SR, Coombes KR (2005) Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J Natl Cancer Inst 97:307–309

    PubMed  CAS  Google Scholar 

  5. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU, Bumgarner RE, Bushel PR, Chaturvedi K, Choi D, Cunningham ML, Deng S, Dressman HK, Fannin RD, Farin FM, Freedman JH, Fry RC, Harper A, Humble MC, Hurban P, Kavanagh TJ, Kaufmann WK, Kerr KF, Jing L, Lapidus JA, Lasarev MR, Li J, Li YJ, Lobenhofer EK, Lu X, Malek RL, Milton S, Nagalla SR, O’malley JP, Palmer VS, Pattee P, Paules RS, Perou CM, Phillips K, Qin LX, Qiu Y, Quigley SD, Rodland M, Rusyn I, Samson LD, Schwartz DA, Shi Y, Shin JL, Sieber SO, Slifer S, Speer MC, Spencer PS, Sproles DI, Swenberg JA, Suk WA, Sullivan RC, Tian R, Tennant RW, Todd SA, Tucker CJ, Van Houten B, Weis BK, Xuan S, Zarbl H (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nature Methods 2:351–356

    Article  PubMed  CAS  Google Scholar 

  6. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692

    Article  PubMed  CAS  Google Scholar 

  7. Bertucci F, Nasser V, Granjeaud S, Eisinger F, Adelaide J, Tagett R, Loriod B, Giaconia A, Benziane A, Devilard E, Jacquemier J, Viens P, Nguyen C, Birnbaum D, Houlgatte R (2002) Gene expression profiles of poor-prognosis primary breast cancer correlate with survival. Hum Mol Genet 11:863–872

    Article  PubMed  CAS  Google Scholar 

  8. Bertucci F, Viens P, Hingamp P, Nasser V, Houlgatte R, Birnbaum D (2003) Breast cancer revisited using DNA array-based gene expression profiling. Int J Cancer 103:565–571

    Article  PubMed  CAS  Google Scholar 

  9. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98:13790–13795

    Article  PubMed  CAS  Google Scholar 

  10. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  11. Brazma A, Vilo J (2000) Gene expression data analysis. FEBS Lett 480:17–24

    Article  PubMed  CAS  Google Scholar 

  12. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  13. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    Article  PubMed  CAS  Google Scholar 

  14. Celis JE, Kruhoffer M, Gromova I, Frederiksen C, Ostergaard M, Thykjaer T, Gromov P, Yu J, Palsdottir H, Magnusson N, Orntoft TF (2000) Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett 480:2–16

    Article  PubMed  CAS  Google Scholar 

  15. Chen CM, Chen HL, Hsiau TH, Hsiau AH, Shi H, Brock GJ, Wei SH, Caldwell CW, Yan PS, Huang TH (2003) Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol 163:37–45

    PubMed  CAS  Google Scholar 

  16. Cheung PK, Woolcock B, Adomat H, Sutcliffe M, Bainbridge TC, Jones EC, Webber D, Kinahan T, Sadar M, Gleave ME, Vielkind J (2004) Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Res 64:5929–5933

    Article  PubMed  CAS  Google Scholar 

  17. Coombes KR, Morris JS, Hu J, Edmonson SR, Baggerly KA (2005) Serum proteomics profiling—a young technology begins to mature. Nat Biotechnol 23:291–292

    Article  PubMed  CAS  Google Scholar 

  18. Cottrell SE, Distler J, Goodman NS, Mooney SH, Kluth A, Olek A, Schwope I, Tetzner R, Ziebarth H, Berlin K (2004) A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res 32:e10

    Article  PubMed  Google Scholar 

  19. Cowherd SM, Espina VA, Petricoin EF III, Liotta LA (2004) Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays. Clin Breast Cancer 5:385–392

    Article  PubMed  CAS  Google Scholar 

  20. Dancey J, Sausville EA (2003) Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2:296–313

    Article  PubMed  CAS  Google Scholar 

  21. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  PubMed  CAS  Google Scholar 

  22. Diamandis EP (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 96:353–356

    Article  PubMed  Google Scholar 

  23. Diamandis EP, van der Merwe DE (2005) Plasma protein profiling by mass spectrometry for cancer diagnosis: opportunities and limitations. Clin Cancer Res 11:963–965

    PubMed  CAS  Google Scholar 

  24. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  25. Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, Coppola D, Kruhoffer M, Aaltonen L, Orntoft TF, Quackenbush J, Yeatman TJ (2005) Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol 23:3526–3535

    Article  PubMed  CAS  Google Scholar 

  26. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn RM, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98:13784–13789

    Article  PubMed  CAS  Google Scholar 

  27. Geho D, Lahar N, Gurnani P, Huebschman M, Herrmann P, Espina V, Shi A, Wulfkuhle J, Garner H, Petricoin E III, Liotta LA, Rosenblatt KP (2005) Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reverse-phase protein microarrays. Bioconjug Chem 16:559–566

    Article  PubMed  CAS  Google Scholar 

  28. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, Mariani G, Rodriguez J, Carcangiu M, Watson D, Valagussa P, Rouzier R, Symmans WF, Ross JS, Hortobagyi GN, Pusztai L, Shak S (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277

    Article  PubMed  CAS  Google Scholar 

  29. Giordano TJ, Shedden KA, Schwartz DR, Kuick R, Taylor JM, Lee N, Misek DE, Greenson JK, Kardia SL, Beer DG, Rennert G, Cho KR, Gruber SB, Fearon ER, Hanash S (2001) Organ-specific molecular classification of primary lung, colon, and ovarian adenocarcinomas using gene expression profiles. Am J Pathol 159:1231–1238

    PubMed  CAS  Google Scholar 

  30. Goldmann T, Flohr AM, Murua EH, Gerstmayer B, Janssen U, Bosio A, Loeschke S, Vollmer E, Bullerdiek J (2004) The HOPE-technique permits Northern blot and microarray analyses in paraffin-embedded tissues. Pathol Res Pract 200:511–515

    Article  PubMed  CAS  Google Scholar 

  31. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  PubMed  CAS  Google Scholar 

  32. Hanash S (2003) Disease proteomics. Nature 422:226–232

    Article  PubMed  CAS  Google Scholar 

  33. Higuchi E, Oridate N, Furuta Y, Suzuki S, Hatakeyama H, Sawa H, Sunayashiki-Kusuzaki K, Yamazaki K, Inuyama Y, Fukuda S (2003) Differentially expressed genes associated with CIS-diamminedichloroplatinum (II) resistance in head and neck cancer using differential display and CDNA microarray. Head Neck 25:187–193

    Article  PubMed  Google Scholar 

  34. Hofmann WK, de Vos S, Elashoff D, Gschaidmeier H, Hoelzer D, Koeffler HP, Ottmann OG (2002) Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and geneexpression profiles: a gene-expression study. Lancet 359:481–486

    Article  PubMed  CAS  Google Scholar 

  35. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild A, Iversen ES, Liao M, Chen CM, West M, Nevins JR, Huang AT (2003) Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596

    Article  PubMed  CAS  Google Scholar 

  36. Hudelist G, Pacher-Zavisin M, Singer CF, Holper T, Kubista E, Schreiber M, Manavi M, Bilban M, Czerwenka K (2004) Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue. Breast Cancer Res Treat 86:281–291

    Article  PubMed  CAS  Google Scholar 

  37. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Google Scholar 

  38. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  39. Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T, Smith PD, Jiang Y, Gooden GC, Trent JM, Meltzer PS (1998) Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58:5009–5013

    PubMed  CAS  Google Scholar 

  40. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  PubMed  CAS  Google Scholar 

  41. Kihara C, Tsunoda T, Tanaka T, Yamana H, Furukawa Y, Ono K, Kitahara O, Zembutsu H, Yanagawa R, Hirata K, Takagi T, Nakamura Y (2001) Prediction of sensitivity of esophageal tumors to adjuvant chemotherapy by cDNA microarray analysis of gene-expression profiles. Cancer Res 61:6474–6479

    PubMed  CAS  Google Scholar 

  42. Knezevic V, Leethanakul C, Bichsel VE, Worth JM, Prabhu VV, Gutkind JS, Liotta LA, Munson PJ, Petricoin EF III, Krizman DB (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1:1271–1278

    Article  PubMed  CAS  Google Scholar 

  43. Krieg RC, Gaisa NT, Paweletz CP, Knuechel R (2005) Proteomic analysis of human bladder tissue using SELDI approach following microdissection techniques. Methods Mol Biol 293:255–267

    PubMed  CAS  Google Scholar 

  44. Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel JD (2003) Antibody microarrays: an evaluation of production parameters. Proteomics 3:254–264

    Article  PubMed  CAS  Google Scholar 

  45. Lage H, Dietel M (2000) Effect of the breast-cancer resistance protein on atypical multidrug resistance. Lancet Oncol 1:169–175

    Article  PubMed  CAS  Google Scholar 

  46. Lage H, Dietel M (2002) Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells. J Cancer Res Clin Oncol 128:349–357

    Article  PubMed  CAS  Google Scholar 

  47. Lawrie LC, Curran S (2005) Laser capture microdissection and colorectal cancer proteomics. Methods Mol Biol 293:245–253

    PubMed  CAS  Google Scholar 

  48. Lee SI, Batzoglou S (2003) Application of independent component analysis to microarrays. Genome Biol 4:R76

    Article  PubMed  Google Scholar 

  49. Liebermeister W (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics 18:51–60

    Article  PubMed  CAS  Google Scholar 

  50. Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, Munson PJ, Young L, Wulfkuhle J, Petricoin EF III (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3:317–325

    Article  PubMed  CAS  Google Scholar 

  51. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979

    Article  PubMed  CAS  Google Scholar 

  52. Macgregor PF, Squire JA (2002) Application of microarrays to the analysis of gene expression in cancer. Clin Chem 48:1170–1177

    PubMed  CAS  Google Scholar 

  53. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  PubMed  CAS  Google Scholar 

  54. Nessling M, Richter K, Schwaenen C, Roerig P, Wrobel G, Wessendorf S, Fritz B, Bentz M, Sinn HP, Radlwimmer B, Lichter P (2005) Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res 65:439–447

    PubMed  CAS  Google Scholar 

  55. Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA 100:9330–9335

    Article  PubMed  Google Scholar 

  56. Olek A, Oswald J, Walter J (1996) A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res 24:5064–5066

    Article  PubMed  CAS  Google Scholar 

  57. Ono K, Tanaka T, Tsunoda T, Kitahara O, Kihara C, Okamoto A, Ochiai K, Takagi T, Nakamura Y (2000) Identification by cDNA microarray of genes involved in ovarian carcinogenesis. Cancer Res 60:5007–5011

    PubMed  CAS  Google Scholar 

  58. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin EF III, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  PubMed  CAS  Google Scholar 

  59. Paweletz CP, Trock B, Pennanen M, Tsangaris T, Magnant C, Liotta LA, Petricoin EF III (2001) Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 17:301–307

    PubMed  CAS  Google Scholar 

  60. Perou CM, Sorlie T, Eisen MB, van de Rijn RM, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  61. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–577

    Article  PubMed  CAS  Google Scholar 

  62. Pollack JR, van de Rijn RM, Botstein D (2002) Challenges in developing a molecular characterization of cancer. Semin Oncol 29:280–285

    Article  PubMed  CAS  Google Scholar 

  63. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154

    Article  PubMed  CAS  Google Scholar 

  64. Ransohoff DF (2005) Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 97:315–319

    PubMed  CAS  Google Scholar 

  65. Raponi M, Belly RT, Karp JE, Lancet JE, Atkins D, Wang Y (2004) Microarray analysis reveals genetic pathways modulated by tipifarnib in acute myeloid leukemia. BMC Cancer 4:56

    Article  PubMed  CAS  Google Scholar 

  66. Saidi SA, Holland CM, Kreil DP, MacKay DJ, Charnock-Jones DS, Print CG, Smith SK (2004) Independent component analysis of microarray data in the study of endometrial cancer. Oncogene 23:6677–6683

    Article  PubMed  CAS  Google Scholar 

  67. Scharpf R, Garrett ES, Hu J, Parmigiani G (2003) Statistical modeling and visualization of molecular profiles in cancer. Biotechniques 34:S22–S29

    Google Scholar 

  68. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–244

    Article  PubMed  CAS  Google Scholar 

  69. Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, Misek DE, Wu R, Zhai Y, Darrah DM, Reed H, Ellenson LH, Giordano TJ, Fearon ER, Hanash SM, Cho KR (2002) Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 62:4722–4729

    PubMed  CAS  Google Scholar 

  70. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, Aquino J, Speer R, Araujo R, Mills GB, Liotta LA, Petricoin EF III, Wulfkuhle JD (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  PubMed  CAS  Google Scholar 

  71. Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang TH (2003) Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 63:2164–2171

    PubMed  CAS  Google Scholar 

  72. Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18

    Article  PubMed  CAS  Google Scholar 

  73. Sobin LH, Wittekind Ch (eds) (2002) TNM classification of malignant tumors, UICC, 6th edn. Wiley, New York

    Google Scholar 

  74. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn RM, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein LP, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  75. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    Article  PubMed  CAS  Google Scholar 

  76. Souchelnytskyi S (2002) Proteomics in studies of signal transduction in epithelial cells. J Mammary Gland Biol Neoplasia 7:359–371

    Article  PubMed  Google Scholar 

  77. Sreekumar A, Nyati MK, Varambally S, Barrette TR, Ghosh D, Lawrence TS, Chinnaiyan AM (2001) Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res 61:7585–7593

    PubMed  CAS  Google Scholar 

  78. Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM, Moskaluk CA, Frierson HF Jr, Hampton GM (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61:7388–7393

    PubMed  CAS  Google Scholar 

  79. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907–2912

    Article  PubMed  CAS  Google Scholar 

  80. Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31:5676–5684

    Article  PubMed  CAS  Google Scholar 

  81. Tannapfel A, Anhalt K, Hausermann P, Sommerer F, Benicke M, Uhlmann D, Witzigmann H, Hauss J, Wittekind C (2003) Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J Pathol 201:238–249

    Article  PubMed  CAS  Google Scholar 

  82. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285

    Article  PubMed  CAS  Google Scholar 

  83. Tothill RW, Kowalczyk A, Rischin D, Bousioutas A, Haviv I, van Laar RK, Waring PM, Zalcberg J, Ward R, Biankin AV, Sutherland RL, Henshall SM, Fong K, Pollack JR, Bowtell DD, Holloway AJ (2005) An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 65:4031–4040

    Article  PubMed  CAS  Google Scholar 

  84. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  85. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Bernards R, Friend SH (2003) Expression profiling predicts outcome in breast cancer. Breast Cancer Res 5:57–58

    Article  Google Scholar 

  86. Vihinen PP, Pyrhonen SO, Kahari VM (2003) New prognostic factors and developing therapy of cutaneous melanoma. Ann Med 35:66–78

    Article  PubMed  CAS  Google Scholar 

  87. Wang W, Marsh S, Cassidy J, McLeod HL (2001) Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res 61:5505–5510

    PubMed  CAS  Google Scholar 

  88. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  89. Watson MA, Perry A, Budhjara V, Hicks C, Shannon WD, Rich KM (2001) Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Res 61:1825–1829

    PubMed  CAS  Google Scholar 

  90. Wei SH, Chen CM, Strathdee G, Harnsomburana J, Shyu CR, Rahmatpanah F, Shi H, Ng SW, Yan PS, Nephew KP, Brown R, Huang TH (2002) Methylation microarray analysis of late-stage ovarian carcinomas distinguishes progression-free survival in patients and identifies candidate epigenetic markers. Clin Cancer Res 8:2246–2252

    PubMed  CAS  Google Scholar 

  91. Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, Chen S, Shu H, Sahin A, Kurek R, Wallwiener D, Merino MJ, Petricoin EF III, Zhao Y, Steeg PS (2002) Proteomics of human breast ductal carcinoma in situ. Cancer Res 62:6740–6749

    PubMed  CAS  Google Scholar 

  92. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1:133–143

    Article  PubMed  CAS  Google Scholar 

  93. Yu YP, Paranjpe S, Nelson J, Finkelstein S, Ren B, Kokkinakis D, Michalopoulos G, Luo JH (2005) High throughput screening of methylation status of genes in prostate cancer using an oligonucleotide methylation array. Carcinogenesis 26:471–479

    Article  PubMed  CAS  Google Scholar 

  94. Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama Y, Tamaoki N, Nomura T, Kitahara O, Yanagawa R, Hirata K, Nakamura Y (2002) Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 62:518–527

    PubMed  CAS  Google Scholar 

  95. Zha H, Raffeld M, Charboneau L, Pittaluga S, Kwak LW, Petricoin E III, Liotta LA, Jaffe ES (2004) Similarities of prosurvival signals in Bcl-2-positive and Bcl-2-negative follicular lymphomas identified by reverse phase protein microarray. Lab Invest 84:235–244

    Article  PubMed  CAS  Google Scholar 

  96. Zhang Z, Bast RC Jr, Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY, Berchuck A, Haaften-Day C, Hacker NF, de Bruijn HW, van der Zee AG, Jacobs IJ, Fung ET, Chan DW (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64:5882–5890

    Article  PubMed  CAS  Google Scholar 

  97. Zheng Y, Xu Y, Ye B, Lei J, Weinstein MH, O’Leary MP, Richie JP, Mok SC, Liu BC (2003) Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 98:2576–2582

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The comments on the manuscript by Nils Bluethgen, Institute for Theoretical Biology, Humboldt University, Berlin are gratefully acknowledged. We appreciate the help of Balacz Gyorffy and we are especially grateful for the secretarial work of Mrs. von Bogen. This work was supported by Oligene GmbH, Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Dietel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietel, M., Sers, C. Personalized medicine and development of targeted therapies: the upcoming challenge for diagnostic molecular pathology. A review. Virchows Arch 448, 744–755 (2006). https://doi.org/10.1007/s00428-006-0189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-006-0189-2

Keywords

Navigation