Skip to main content

Lactosylceramide in lysosomal storage disorders. A comparative immunohistochemical and biochemical study

Abstract

Immunohistochemical studies of the presence of lactosylceramide (LacCer) in lysosomal storage disorders (LSDs) were done using anti-LacCer monoclonal antibody of the CDw17 type (clone MG-2). No sign of an association between LacCer and the lysosomal system in normal cells was observed, except for histiocytes active in phagocytosis. A comparative study of a group of LSDs showed a general tendency for LacCer to increase in storage cells in Niemann-Pick disease type C (NPC), and types A and B, GM1 gangliosidosis, acid lipase deficiency, glycogen storage disease type II and mucopolysaccharidoses. LacCer accumulated in storage cells despite normal activity of relevant lysosomal degrading enzymes. The accumulation of LacCer displayed variability within storage cell populations, and was mostly expressed in neurons in NPC. An absence of the increase in LacCer in storage cells above control levels was seen in neuronal ceroid lipofuscinoses (neurons and cardiocytes) and in Fabry disease. Gaucher and Krabbe cells showed significantly lower levels, or even the absence, of LacCer compared with control macrophages. Results of immunohistochemistry were corroborated by semiquantitative lipid thin-layer chromatography (TLC). It is suggested that different associations of LacCer with the lysosomal storage process may reflect differences in glycosphingolipid turnover induced by the storage-compromised lysosomal/endosomal system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. Abe T, Okada R (1972) Lipid analysis of a case of GM1-generalized gangliosidosis. Jpn J Exp Med 42:543–551

    CAS  PubMed  Google Scholar 

  2. Angstrom J, Teneberg S, Milh MA, Larsson T, Leonardsson I, Olsson BM, Halvarsson MO, Danielsson D, Naslund I, Ljungh A, Wadstrom T, Karlsson KA (1998) The lactosylceramide binding specificity of Helicobacter pylori. Glycobiology 8:297–309

    Article  CAS  PubMed  Google Scholar 

  3. Arai T, Bhunia AK, Chatterjee S, Bulkley GB (1998) Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ Res 82:540–547

    CAS  PubMed  Google Scholar 

  4. Bhunia AK, Han H, Snowden A, Chatterjee S (1996) Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J Biol Chem 271:10660–10666

    Article  CAS  PubMed  Google Scholar 

  5. Bhunia AK, Arai T, Bulkley G, Chatterjee S (1998) Lactosylceramide mediates tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 (ICAM-1) expression and the adhesion of neutrophil in human umbilical vein endothelial cells. J Biol Chem 273:34349–34357

    Article  CAS  PubMed  Google Scholar 

  6. Bradova V, Smid F, Ulrich-Bott B, Roggendorf W, Paton BC, Harzer K (1993) Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92:143–152

    CAS  PubMed  Google Scholar 

  7. Brady RO, King FM (1973) Gaucher’s disease. In: Hers HG, Van Hoof F (ed) Lysosomes and storage diseases. Academic Press, New York, pp 381–394

    Google Scholar 

  8. Brady RO, O’Brien JS, Bradley RM, Gal AE (1970) Sphingolipid hydrolases in brain tissue of patients with generalized gangliodosis. Biochim Biophys Acta 210:193–195

    CAS  PubMed  Google Scholar 

  9. Brooks SA, Dwek MV, Shumacher U (eds) (2002) Functional and molecular glycobiology. BIOS Scientific Publishers, Oxford

    Google Scholar 

  10. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  11. Brunngraber EG, Berra B, Zambotti V (1973) Altered levels of tissue glycoproteins, gangliosides, glycosaminoglycans and lipids in Niemann-Pick’s disease. Clin Chim Acta 48:173–181

    Article  CAS  PubMed  Google Scholar 

  12. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Tagle DA, et al (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  CAS  PubMed  Google Scholar 

  13. Constantopoulos G, Shull RM, Hastings N, Neufeld EF (1985) Neurochemical characterization of canine alpha-L-iduronidase deficiency disease (model of human mucopolysaccharidosis I). J Neurochem 45:1213–1217

    Google Scholar 

  14. Cox TM (2001) Gaucher disease: understanding the molecular pathogenesis of sphingolipidoses. J Inherit Metab Dis 24 [Suppl 2]:106–121 (discussion 87–88)

    CAS  PubMed  Google Scholar 

  15. Dawson G, Oh JY (1977) Blood glucosylceramide levels in Gaucher’s disease and its distribution amongst lipoprotein fractions. Clin Chim Acta 75:149–153

    Article  CAS  PubMed  Google Scholar 

  16. Ebato H, Abe T, Yamakawa T, Nagashima K (1980) Characterization of the cytoplasmic inclusion bodies of the spleens from patients with adult form Gaucher’s disease. J Biochem (Tokyo) 88:1765–1772

    CAS  Google Scholar 

  17. Elleder M (1978) A histochemical and ultrastructural study of stored material in neuronal ceroid lipofuscinosis. Virchows Arch B Cell Pathol 28:167–178

    CAS  PubMed  Google Scholar 

  18. Elleder M, Jirasek A (1981) Histochemical and ultrastructural study of Gaucher cells. Acta Neuropathol Suppl (Berl) 7:208–210

    CAS  Google Scholar 

  19. Elleder M, Lojda Z (1971) Studies in lipid histochemistry. VI. Problems of extraction with acetone in lipid histochemistry. Histochemie 28:68–87

    Article  CAS  PubMed  Google Scholar 

  20. Elleder M, Jirasek A, Smid F, Ledvinova J, Besley GT (1985) Niemann-Pick disease type C. Study on the nature of the cerebral storage process. Acta Neuropathol (Berl) 66:325–336

    Google Scholar 

  21. Elleder M, Dorazilova V, Bradova V, Belohlavek M, Kral V, Choura M, Budesinsky M, Harzer K (1990) Fabry’s disease with isolated disease of the cardiac muscle, manifesting as hypertrophic cardiomyopathy. Cas Lek Cesk 129:369–372

    CAS  PubMed  Google Scholar 

  22. Elleder M, Chlumska A, Hyanek J, Poupetova H, Ledvinova J, Maas S, Lohse P (2000) Subclinical course of cholesteryl ester storage disease in an adult with hypercholesterolemia, accelerated atherosclerosis, and liver cancer. J Hepatol 32:528–534

    Article  CAS  PubMed  Google Scholar 

  23. Goyert SM (1996) CDw17 workshop panel report. In: Kishimoto T (ed) Leucocyte typing VI, Kobe, Japan. Garland Publishing, New York, pp 971–972

    Google Scholar 

  24. Greenbaum M, Hoffman LM, Schneck L (1976) Ceramide hexosides in Niemann-Pick disease brain. J Neurol 213:251–255

    Article  CAS  PubMed  Google Scholar 

  25. Hadfield MG, Ghatak NR, Nakoneczna I, Lippman HR, Myer EC, Constantopoulos G, Bradley RM (1980) Pathologic findings in mucopolysaccharidosis type IIIB (Sanfilippo’s syndrome B). Arch Neurol 37:645–650

    CAS  PubMed  Google Scholar 

  26. Hara A, Kitazawa N, Taketomi T (1984) Abnormalities of glycosphingolipids in mucopolysaccharidosis type III B. J Lipid Res 25:175–184

    CAS  PubMed  Google Scholar 

  27. Harzer K, Paton BC, Poulos A, Kustermann-Kuhn B, Roggendorf W, Grisar T, Popp M (1989) Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr 149:31–39

    CAS  PubMed  Google Scholar 

  28. Hers HG, de Barsy T (1973) Type II glycogenosis (acid maltase deficiency). In: Hers HG, Van Hoof F (ed) Lysosomes and storage diseases. Academic Press, New York, pp 197–217

    Google Scholar 

  29. Hulkova H, Ledvinova J, Poupetova H, Bultas J, Zeman J, Elleder M (1999) Postmortem diagnosis of Fabry disease in a female heterozygote leading to the detection of undiagnosed manifest disease in the family. Cas Lek Cesk 138:660–664

    CAS  PubMed  Google Scholar 

  30. Hulkova H, Cervenkova M, Ledvinova J, Tochackova M, Hrebicek M, Poupetova H, Befekadu A, Berna L, Paton BC, Harzer K, Boor A, Smid F, Elleder M (2001) A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet 10:927–940

    Article  CAS  PubMed  Google Scholar 

  31. Chatterjee S (1998) Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol 18:1523–1533

    CAS  PubMed  Google Scholar 

  32. Chatterjee S, Sekerke CS, Kwiterovich PO Jr (1982) Increased urinary excretion of glycosphingolipids in familial hypercholesterolemia. J Lipid Res 23:513–522

    CAS  PubMed  Google Scholar 

  33. Chatterjee S, Kwiterovich PO Jr, Gupta P, Erozan YS, Alving CR, Richards RL (1983) Localization of urinary lactosylceramide in cytoplasmic vesicles of renal tubular cells in homozygous familial hypercholesterolemia. Proc Natl Acad Sci U S A 80:1313–1317

    CAS  PubMed  Google Scholar 

  34. Chatterjee S, Dey S, Shi WY, Thomas K, Hutchins GM (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7:57–65

    CAS  PubMed  Google Scholar 

  35. Chen CS, Patterson MC, Wheatley CL, O’Brien JF, Pagano RE (1999) Broad screening test for sphingolipid-storage diseases. Lancet 354:901–905

    Article  CAS  PubMed  Google Scholar 

  36. Iwabuchi K, Nagaoka I (2002) Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100:1454–1464

    CAS  PubMed  Google Scholar 

  37. Iwamoto T, Fukumoto S, Kanaoka K, Sakai E, Shibata M, Fukumoto E, Inokuchi Ji J, Takamiya K, Furukawa K, Kato Y, Mizuno A (2001) Lactosylceramide is essential for the osteoclastogenesis mediated by macrophage-colony-stimulating factor and receptor activator of nuclear factor-kappa B ligand. J Biol Chem 276:46031–46038

    Article  CAS  PubMed  Google Scholar 

  38. Kahma K, Brotherus J, Haltia M, Renkonen O (1976) Low and moderate concentrations of lysobisphosphatidic acid in brain and liver of patients affected by some storage diseases. Lipids 11:539–544

    CAS  PubMed  Google Scholar 

  39. Kamoshita S, Aron AM, Suzuki K (1969) Infantile Niemann-Pick disease. A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin. Am J Dis Child 117:379–394

    CAS  PubMed  Google Scholar 

  40. Kannan R, Tjiong HB, Debuch H, Wiedemann HR (1974) Unusual glycolipids in brain cortex of a visceral lipidosis (Niemann-Pick disease?). Hoppe Seylers Z Physiol Chem 355:551–556

    CAS  PubMed  Google Scholar 

  41. Kasama T, Taketomi T (1986) Abnormalities of cerebral lipids in GM1-gangliosidoses, infantile, juvenile, and chronic type. Jpn J Exp Med 56:1–11

    CAS  PubMed  Google Scholar 

  42. Klibansky C, Ossimi Z, Matoth Y, Pinkhas J, de Vries A (1976) Accumulation of lactosyl ceramide in leukocytes of patients with adult Gaucher’s disease. Clin Chim Acta 72:141–146

    Article  CAS  PubMed  Google Scholar 

  43. Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S (1992) Cell adhesion in a dynamic flow system as compared to static system. Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominates over lectin- or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells. J Biol Chem 267:17264–17270

    CAS  PubMed  Google Scholar 

  44. Koubek K, Korinkova P, Hruba A, Hausner P (1988) Human leukocyte markers defined by monoclonal antibodies. I. Expression of X-hapten structure on cells of myeloid lineage. Folia Haematol Int Mag Klin Morphol Blutforsch 115:913–926

    CAS  PubMed  Google Scholar 

  45. Kuske TT, Rosenberg A (1972) Quantity and fatty acyl composition of the glycosphingolipids of Gaucher spleen. J Lab Clin Med 80:523–529

    CAS  PubMed  Google Scholar 

  46. Ledeen RW, Yu RK, Eng LF (1973) Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component. J Neurochem 21:829–839

    CAS  PubMed  Google Scholar 

  47. Lingwood CA (1998) Oligosaccharide receptors for bacteria: a view to a kill. Curr Opin Chem Biol 2:695–700

    Article  CAS  PubMed  Google Scholar 

  48. Lund-Johansen F, Olweus J, Horejsi V, Skubitz KM, Thompson JS, Vilella R, Symington FW (1992) Activation of human phagocytes through carbohydrate antigens (CD15, sialyl-CD15, CDw17, and CDw65). J Immunol 148:3221–3229

    CAS  PubMed  Google Scholar 

  49. Lusa S, Blom TS, Eskelinen EL, Kuismanen E, Mansson JE, Simons K, Ikonen E (2001) Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J Cell Sci 114:1893–1900

    CAS  PubMed  Google Scholar 

  50. Malinina L, Malakhova ML, Teplov A, Brown RE, Patel DJ (2004) Structural basis for glycosphingolipid transfer specificity. Nature 430:1048–1053

    Article  CAS  PubMed  Google Scholar 

  51. Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303:531–534

    Article  CAS  PubMed  Google Scholar 

  52. Moore RM, Lundgren DW, Silver RJ, Moore JJ (2002) Lactosylceramide-induced apoptosis in primary amnion cells and amnion-derived WISH cells. J Soc Gynecol Investig 9:282–289

    Article  CAS  PubMed  Google Scholar 

  53. Mukhin DN, Chao FF, Kruth HS (1995) Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis. Arterioscler Thromb Vasc Biol 15:1607–1615

    CAS  PubMed  Google Scholar 

  54. Muthing J, Maurer U, Neumann U, Kniep B, Weber-Schurholz S (1998) Glycosphingolipids of skeletal muscle: I. Subcellular distribution of neutral glycosphingolipids and gangliosides in rabbit skeletal muscle. Carbohydr Res 307:135–145

    Article  CAS  PubMed  Google Scholar 

  55. Natomi H, Sugano K, Iwamori M, Takaku F, Nagai Y (1988) Region-specific distribution of glycosphingolipids in the rabbit gastrointestinal tract: preferential enrichment of sulfoglycolipids in the mucosal regions exposed to acid. Biochim Biophys Acta 961:213–222

    CAS  PubMed  Google Scholar 

  56. Nilsson O, Mansson JE, Hakansson G, Svennerholm L (1982) The occurrence of psychosine and other glycolipids in spleen and liver from the three major types of Gaucher’s disease. Biochim Biophys Acta 712:453–463

    CAS  PubMed  Google Scholar 

  57. Parkin ET, Turner AJ, Hooper NM (2001) Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase. Biochem J 358:209–216

    Article  CAS  PubMed  Google Scholar 

  58. Philippart M, Rosenstein B, Menkes JH (1965) Isolation and characterization of the main splenic glycolipids in the normal organ and in Gaucher’s disease: evidence for the site of metabolic block. J Neuropathol Exp Neurol 24:290–303

    CAS  PubMed  Google Scholar 

  59. Philippart M, Martin L, Martin JJ, Menkes JH (1969) Niemann-Pick disease. Morphologic and biochemical studies in the visceral form with late central nervous system involvement (Crocker’s group C). Arch Neurol 20:227–238

    CAS  PubMed  Google Scholar 

  60. Prokazova NV, Mukhin DN, Orekhov AN, Gladkaya EM, Vasilevskaya VV, Mikhailenko IA, Sadovskaya VL, Bushuev VN, Bergelson LD (1989) Neutral glycolipids of atherosclerotic plaques and unaffected human aorta tissue. Eur J Biochem 180:167–171

    Article  CAS  PubMed  Google Scholar 

  61. Puri V, Watanabe R, Dominguez M, Sun X, Wheatley CL, Marks DL, Pagano RE (1999) Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol 1:386–388

    Article  CAS  PubMed  Google Scholar 

  62. Rouser G, Kritchevsky G, Yamamoto A, Knudson AG, Simon G (1968) Accumulation of a glycerophospholipid in classical Niemann-Pick disease. Lipids 3:287–290

    CAS  Google Scholar 

  63. Saito M, Rosenberg A (1985) The fate of glucosylceramide (glucocerebroside) in genetically impaired (lysosomal beta-glucosidase deficient) Gaucher disease diploid human fibroblasts. J Biol Chem 260:2295–2300

    Google Scholar 

  64. Sandhoff K, Kolter T, Harzer K (2001) Sphingolipid activator proteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3371–3388

    Google Scholar 

  65. Seng PN, Debuch H, Witter B, Wiedemann HR (1971) Augmentation of bis(monoacylglycerin)phosphoric acid in sphingomyelinosis (M. Niemann-Pick?). Hoppe Seylers Z Physiol Chem 352:280–288

    CAS  PubMed  Google Scholar 

  66. Simons K, Gruenberg J (2000) Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10:459–462

    Article  CAS  PubMed  Google Scholar 

  67. Suomi WD, Agranoff BW (1965) Lipids of the spleen in Gaucher’s disease. J Lipid Res 58:211–219

    CAS  PubMed  Google Scholar 

  68. Suzuki A, Kundu SK, Marcus DM (1980) An improved technique for separation of neutral glycosphingolipids by high-performance liquid chromatography. J Lipid Res 21:473–477

    CAS  PubMed  Google Scholar 

  69. Svennerholm L, Vanier MT, Mansson JE (1980) Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res 21:53–64

    CAS  PubMed  Google Scholar 

  70. Symington FW, Murray WA, Bearman SI, Hakomori S (1987) Intracellular localization of lactosylceramide, the major human neutrophil glycosphingolipid. J Biol Chem 262:11356–11363

    CAS  PubMed  Google Scholar 

  71. Tjiong HB, Seng PN, Debuch H, Wiedemann HR (1973) Brain lipids of a case of juvenile Niemann-Pick disease. J Neurochem 21:1475–1485

    CAS  PubMed  Google Scholar 

  72. Van Hoof F (1973) GM1-gangliosidosis. In: Hers HG, Van Hoof F (eds) Lysosomes and storage diseases. Academic Press, New York, pp 305–322

    Google Scholar 

  73. Van Hoof F (1973) Mucopolysaccharidoses. In: Hers HG, Van Hoof F (eds) Lysosomes and storage diseases. Academic Press, New York, pp 218–262

    Google Scholar 

  74. van Meer G, Lisman Q (2002) Sphingolipid transport: rafts and translocators. J Biol Chem 277:25855–25858

    Article  PubMed  Google Scholar 

  75. Vanier MT (1983) Biochemical studies in Niemann-Pick disease. I. Major sphingolipids of liver and spleen. Biochim Biophys Acta 750:178–184

    CAS  PubMed  Google Scholar 

  76. Vanier MT (1999) Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res 24:481–489

    Article  CAS  PubMed  Google Scholar 

  77. Walkley SU (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444

    Article  CAS  PubMed  Google Scholar 

  78. Whitfield PD, Nelson P, Sharp PC, Bindloss CA, Dean C, Ravenscroft EM, Fong BA, Fietz MJ, Hopwood JJ, Meikle PJ (2002) Correlation among genotype, phenotype, and biochemical markers in Gaucher disease: implications for the prediction of disease severity. Mol Genet Metab 75:46–55

    Article  CAS  PubMed  Google Scholar 

  79. Yeh LH, Kinsey AM, Chatterjee S, Alevriadou BR (2001) Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. J Vasc Res 38:551–559

    Article  CAS  PubMed  Google Scholar 

  80. Zervas M, Dobrenis K, Walkley SU (2001) Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 60:49–64

    CAS  PubMed  Google Scholar 

  81. Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE (1998) A novel carbohydrate-glycosphingolipid interaction between a beta-(1-3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem 273:22014–22020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Miss Jana Sovová is gratefully acknowledged. The study was supported by research project of the Ministry of Education of the Czech Republic (VZ 111100003) and by the Grant Agency of Charles University (GAUK 16/2002/c).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elleder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hůlková, H., Ledvinová, J., Asfaw, B. et al. Lactosylceramide in lysosomal storage disorders. A comparative immunohistochemical and biochemical study. Virchows Arch 447, 31–44 (2005). https://doi.org/10.1007/s00428-005-1246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-005-1246-y

Keywords

  • Lactosylceramide
  • Immunohistochemistry
  • Lysosomal storage disorders