Skip to main content

Advertisement

Log in

Experimental rat model for therapeutic retinal pigment epithelium transplantation—unequivocal microscopic identification of human donor cells by in situ hybridisation of human-specific Alu sequences

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Transplantation of retinal pigment epithelial (RPE) cells is discussed as a possible therapeutic approach for retinal degeneration. Xenogeneic transplantation of human RPE cells in animal models has been studied extensively. Various methods have been used to identify the graft cells, but these methods interfere with cell behaviour so that the monitored physiological post-transplantation course may be influenced. In the present study, we applied a method for an unequivocal identification of the graft cells without interfering cell metabolism or behaviour using in situ hybridisation (ISH) of human specific Alu sequences. Visualisation of the strong extended nuclear signal of Alu sequences was much easier than that of the small nuclear signals of donor-specific sex chromosome probes. With Alu probe, even single graft cells can be identified and their development can be observed in short-term and long-term studies. With this procedure, we could prove that donor cells were injected correctly into the subretinal space by a special injection technique that we developed previously. In combination with immunohistochemistry, donor cells could be clearly discriminated from macrophages, which contained phagocytosed donor cell fragments. Application of these ISH methods for species-specific identification was valuable for follow-up-studies of RPE transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Böhnke M (1991) Corneal preservation in organ culture. Curr Opin Ophthalmol 2:432–442

    Google Scholar 

  2. Crafoord S, Dafgard-Kopp E, Seregard S, Algvere PV (2000) Cellular migration into neural retina following implantation of melanin granules in the subretinal space. Graefes Arch Clin Exp Ophthalmol 238:682–689

    Article  CAS  PubMed  Google Scholar 

  3. Del Cerro M, Notter MFD, Wiegand SJ, Jiang LQ, del Cerro C (1988) Intraretinal transplantation of fluorescently labelled retinal cell suspensions. Neurosci Lett 92:21–26

    Article  PubMed  Google Scholar 

  4. Del Priore L, Kaplan H, Silverman M, Valentino T, Mason G, Hornbeck R (1993) Experimental and surgical aspects of retinal pigment epithelial cell transplantation. Eur J Implant Ref Surg 5:128–132

    Google Scholar 

  5. El Dirini AA, Wang H, Ogden TE, Ryan SJ (1992) Retinal pigment epithelium implantation in the rabbit: technique and morphology. Graefes Arch Clin Exp Ophthalmol 230:292–300

    PubMed  Google Scholar 

  6. He S, Wang HM, Ogden TE, Ryan SJ (1993) Transplantation of cultured human retinal pigment epithelium into rabbit subretina. Graefes Arch Clin Exp Ophthalmol 231:737–742

    CAS  PubMed  Google Scholar 

  7. Jensen UB, Jensen TG, Jensen PKA, Rygaard J, Hansen BS, Fogh J, Kolvraa S, Bolund L (1994) Gene transfer into cultured human epidermis and its transplantation onto immunodeficient mice: an experimental model for somatic gene therapy. J Invest Dermatol 103:391–394

    CAS  PubMed  Google Scholar 

  8. Kellner U (1997) Hereditäre Netzhautdystrophien Teil 2: differentialdiagnose. Ophthalmologe 94:450–465

    CAS  PubMed  Google Scholar 

  9. Kohen L, Enzmann V, Faude F, Wiedemann P (1997) Mechanisms of graft rejection in the transplantation of retinal pigment epithelial cells. Ophthalmic Res 29:298–304

    CAS  PubMed  Google Scholar 

  10. La Vail MM, Li L, Turner JE, Yasumura D (1992) Retinal pigment epithelial cell transplantation in RCS rats: normal metabolism in rescued photoreceptors. Exp Eye Res 55:555–562

    PubMed  Google Scholar 

  11. Lai CC, Gouras P, Doi K, Lu F, Kjeldbye H, Goff SP, Pawliuk R, Leboulch P, Tsang SH (1999) Tracking RPE transplants labeled by retroviral gene transfer with green fluorescent protein. Invest Ophthalmol Vis Sci 40:2141–2146

    CAS  PubMed  Google Scholar 

  12. Li L, Turner JE (1988) Transplantation of retinal pigment epithelium cell to immature and adult rat hosts. Short-term and long-term survival characteristics. Exp Eye Res 47:771–785

    CAS  PubMed  Google Scholar 

  13. Litchfield TM, Whiteley SJO, Lund RD (1997) Transplantation of retinal pigment epithelial, photoreceptor and other cells as treatment for retinal degeneration. Exp Eye Res 64:655–666

    Article  CAS  PubMed  Google Scholar 

  14. Lopez R, Gouras P, Brittis M, Kjeldbye H (1987) Transplantation of cultured rabbit retinal epithelium to rabbit retina using a closed-eye method. Invest Ophthalmol Vis Sci 28:1131–1137

    CAS  PubMed  Google Scholar 

  15. Naumann GOH (1980) Pathologie des Auges. Springer-Verlag, Berlin Heidelberg New York

  16. Osusky R, Jiang M, Buchi ER, Spee C, Ye J, Ryan Sj (1995) beta-Galactosidase transgene expression in transplanted rabbit retinal pigment epithelial cells in vivo. Graefes Arch Clin Exp Ophthalmol 233:220–225

    CAS  PubMed  Google Scholar 

  17. Pauleikhoff D, Holz FG (1996) Die altersabhängige Makuladegeneration. 1. Epidemiologie, Pathogenese und diagnostische Differenzierung. Ophthalmologe 93:299–315

    CAS  PubMed  Google Scholar 

  18. Rudin CM, Thompson CB (2001) Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosomes Cancer 30:64–71

    Article  CAS  PubMed  Google Scholar 

  19. Schäfer H, Warncke B, Weichel J, Engelmann K, Zander AR (2001) Microscopical identification of transplanted cells on single-cell level shown on an experimental model of congenital retinal dystrophy and in human liver after transplantation of bone marrow stem cells. Pathol Res Pract 197:364

    Google Scholar 

  20. Szmulewicz MN, Novick GE, Herrara RJ (1998) Effects of Alu insertion on gene function. Electrophoresis 19:1260–1264

    CAS  PubMed  Google Scholar 

  21. Turner JE, Blair JR, Seiler M, Aramant R, Laedtke TW, Chappell ET, Clarkson L (1988) Retinal transplants and optic nerve bridges: possible strategies for visual recovery as a result of trauma or disease. Int Rev Neurobiol 29:281–308

    CAS  PubMed  Google Scholar 

  22. Valtink M, Weichel J, Richard G, Engelmann K (2001) Transplantation of retinal pigment epithelium cells. In: Alberti WE, Richard G, Sagerman RH (eds) Age-related macular degeneration: current treatment concepts. Springer Verlag, Berlin Heidelberg New York, pp 65–76

  23. Weichel J, Warncke B, Valtink M, Engelmann K, Schäfer H (2000) Evidence of graft cell loss after xenogenic transplantation of human RPE cells into RCS rats. Ophthalmic Res 32[Suppl 2]:54

  24. Weichel J, Valtink M, Engelmann K, Richard G (2002) Use of an oil-hydraulic microinjection pump for subretinal infusions. Ophthalmic Surg Lasers 33:340–342

    PubMed  Google Scholar 

  25. Weisberg TF, Cahill BK, Vary CPH (1996) Non-radioisotopic detection of human xenogeneic DNA in a mouse transplantation model. Mol Cell Probes 10:139–146

    Article  CAS  PubMed  Google Scholar 

  26. Williams RA, Brody BL, Thomas RG, Kaplan RM, Brown SI (1998) The psychosocial impact of macular degeneration. Arch Ophthalmol 116:514–520

    CAS  PubMed  Google Scholar 

  27. Wongpichedchai S, Weiter JJ, Weber P, Dorey K (1992) Comparison of external and internal approaches for transplantation of autologous retinal pigment epithelium. Invest Ophthalmol Vis Sci 33:3341–3352

    CAS  PubMed  Google Scholar 

  28. Yamaguchi K, Yamaguchi K, Young RW, Gaur VP, Greven CM, Slusher MM, Turner JE (1992) Vitreoretinal surgical technique for transplanting retinal pigment epithelium in rabbit retina. Jpn J Ophthalmol 36:142–150

    CAS  PubMed  Google Scholar 

  29. Ye J, Wang H, Ogden TE, Ryan SJ (1999) Allotransplantatio of rabbit retinal pigment epithelial cells double-labelled with 5-bromodeoxyuridine (BrdU) and natural pigment. Curr Eye Res 12:629–639

    Google Scholar 

  30. Young RW (1987) Pathophysiology of age-related macular degeneration. Surv Ophthalmol 31:291–306

    CAS  PubMed  Google Scholar 

  31. Young RW, Gaur VP, Li L, Turner JE (1991) Transplantation of 5-bromodeoxyuridine labeled retinal pigmented epithelial cells on Bruch’s membrane in the rabbit. Invest Ophthalmol Vis Sci 32:982

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Waltraut und Sieglinde Hildebrandt-Stiftung im Stifterverband für die Deutsche Wissenschaft, Germany, and the Hamburger Krebsgesellschaft, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjörg Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warncke, B., Valtink, M., Weichel, J. et al. Experimental rat model for therapeutic retinal pigment epithelium transplantation—unequivocal microscopic identification of human donor cells by in situ hybridisation of human-specific Alu sequences. Virchows Arch 444, 74–81 (2004). https://doi.org/10.1007/s00428-003-0891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-003-0891-2

Keywords

Navigation