Skip to main content
Log in

Immunohistochemical study of the apoptotic mechanisms in the intestinal mucosa during children's coeliac disease

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Mechanisms leading to morphological changes of the small intestine during coeliac disease (CD) are not yet completely recognized; however, two main processes have been suggested recently: remodeling of mucosa by matrix metalloproteinases, and mucosal atrophy by apoptosis. The aim of this study was analysis of the expression of proteins regulating apoptosis in the small intestine of children with active CD (ACD) and potential CD (PCD). Jejunal biopsies of 43 children with PCD and untreated ACD and 21 control samples were analyzed by means of standard indirect immunohistochemical technique for Fas, Fas ligand (Fas-L), tissue transglutaminase (tTG), Bcl-2, and glutathione S-transferase (GST) expression. We found significantly lower numbers of Fas-expressing enterocytes in the ACD patients than in PCD patients and controls. Similarly, the number of Fas-positive mucosal lymphocytes was decreased in ACD when compared with PCD. The number of Fas-L- and tTG-expressing enterocytes and mucosal lymphocytes was higher in both PCD and ACD. On the other hand, the number of Bcl-2-positive mucosal lymphocytes in PCD as well as ACD was significantly lower. The expression of tTG in extracellular matrix was significantly higher in PCD and ACD when compared with controls. Our results showed that Fas and/or Fas-L, Bcl-2, and tTG may be involved in apoptotic pathways leading to mucosal atrophy in children with CD. tTG changes are in agreement with the presumed role of this protein in the pathogenesis of CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Amendola A, Lombardi G, Oliverio S, et al. (1994) HIV-1 gp120-dependent induction of apoptosis in antigen-specific human T cell clones is characterized by "tissue" transglutaminase expression and prevented by cyclosporine A. FEBS Lett 339:258–264

    CAS  PubMed  Google Scholar 

  2. Amendola A, Gougeon ML, Poccia F, et al. (1996) Induction of "tissue" transglutaminase in HIV pathogenesis: evidence for high rate of apoptosis of CD4+ T lymphocytes and accessory cells in lymphoid tissues. Proc Natl Acad Sci USA 93:11057–11062

    Article  CAS  PubMed  Google Scholar 

  3. Berke G (1995) The CTL's kiss of death. Cell 81:9-12

    CAS  PubMed  Google Scholar 

  4. Brusco G, Muzi P, Ciccocioppo R, et al. (1999) Transglutaminase and coeliac disease: endomysial reactivity and small bowel expression. Clin Exp Immunol 118:371–375

    CAS  PubMed  Google Scholar 

  5. Ciccocioppo R, Di Sabatino A, Gasbarrini G, et al. (1999) Apoptosis and gastrointestinal tract. Ital J Gastroenterol Hepatol 31:162–172

    Google Scholar 

  6. Ciccocioppo R, Di Sabatino A, Parroni R, et al. (2000) Cytolytic mechanisms of intraepithelial lymphocytes in coeliac disease (CoD). Clin Exp Immunol 120:235–240

    CAS  PubMed  Google Scholar 

  7. Ciccocioppo R, Di Sabatino A, Parroni R, et al. (2000) Increased enterocyte apoptosis and Fas/Fas ligand system in celiac disease. Am J Clin Pathol 115:494–503

    Article  Google Scholar 

  8. Clapper ML, Szarka CE (1998) Glutathione S-transferases: biomarkers of cancer risk and chemopreventive response. Chem Biol Interact 111:377–388

    Article  Google Scholar 

  9. Di Sabatino A, Ciccocioppo R, D'Aló S, et al. (2001) Intraepithelial and lamina propria lymphocytes show distinct patterns of apoptosis whereas both populations are active in Fas based cytotoxicity in coeliac disease. Gut 49:380–386

    PubMed  Google Scholar 

  10. Farrace MG, Picarelli A, Di Tola M, et al. (2001) Presence of anti-"tissue" transglutaminase antibodies in inflammatory intestinal diseases: an apoptosis-associated event? Cell Death Differ 8:767–770

    Article  CAS  PubMed  Google Scholar 

  11. Fassano A, Catassi C (2001) Current approaches to diagnosis and treatment of coeliac disease: an evolving spectrum. Gastroenterology 120:636–651

    CAS  PubMed  Google Scholar 

  12. Feighery C (1999) Coeliac disease (clinical review). BMJ 319:236–239

    CAS  PubMed  Google Scholar 

  13. Feldmann G, Haouzi D, Moreau A, et al. (2000) Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatitis apoptosis in mice. Hepatology 31:674–683

    CAS  PubMed  Google Scholar 

  14. Ferguson A, Arranz E, O'Mahony S (1993) Clinical and pathological spectrum of coeliac disease—active, silent, latent, potential. Gut 34:150–151

    PubMed  Google Scholar 

  15. Fesus L, Thomazy V, Falus A (1987) Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224:104–108

    Article  CAS  PubMed  Google Scholar 

  16. Hall AG (1999) Glutathione and the regulation of cell death. Adv Exp Med Biol 457:199–203

    CAS  PubMed  Google Scholar 

  17. Hall AG (1999) Review: The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29:238–245

    Article  CAS  PubMed  Google Scholar 

  18. Knight CR, Rees RC, Platts A, et al. (1993) Interleukin-2-activated human effector lymphocytes mediate cytotoxicity by inducing apoptosis in human leukaemia and solid tumour target cells. Immunology 79:535–541

    CAS  PubMed  Google Scholar 

  19. Kroemer G, Petit P, Zamzami N, et al. (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    CAS  PubMed  Google Scholar 

  20. Lebenthal E, Branski D (2002) Celiac disease: an emerging global problem. J Pediatr Gastroenterol Nutr 35:508–512

    Article  PubMed  Google Scholar 

  21. Maiuri L, Auricchio S, Coletta S, et al. (1998) Blockage of T-cell costimulation inhibits T-cell action in celiac disease. Gastroenterology 115:564–572

    CAS  PubMed  Google Scholar 

  22. Maiuri L, Ciacci C, Raia V, et al. (2001) FAS engagement drives apoptosis of enterocytes of coeliac patients. Gut 48:418–424

    Article  CAS  PubMed  Google Scholar 

  23. Marsh MN, Growe PT (1995) Morphology of the mucosal lesion in gluten sensitivity. Baillieres Clin Gastroenterol 9:173–179

    PubMed  Google Scholar 

  24. Martinez-Lorenzo MJ, Anel A, Gamen S, et al. (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163:1274–1281

    CAS  PubMed  Google Scholar 

  25. Marzari R, Sblattero D, Florian F, et al (2001) Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J Immunol 166:4170–4176

    CAS  PubMed  Google Scholar 

  26. Mastino A, Grelli S, Piacentini M, et al. (1993) Correlation between induction of lymphocyte apoptosis and prostaglandin E2 production by macrophages infected with HIV. Cell Immunol 152:120–130

    Article  CAS  PubMed  Google Scholar 

  27. Mitsiades N, Yu WH, Poulaki V, et al (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61:577–581

    PubMed  Google Scholar 

  28. Molberg O, McAdam SN, Korner R, et al. (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4:713–717

    CAS  PubMed  Google Scholar 

  29. Molberg O, McAdam SN, Sollid LM (2000) Role of tissue transglutaminase in celiac disease. J Pediatr Gastroenterol Nutr 30:232–240

    PubMed  Google Scholar 

  30. Moss SF, Attia L, Scholes JV, et al. (1996) Increased small intestinal apoptosis in coeliac disease. Gut 39:811–817

    CAS  Google Scholar 

  31. Mullighan CG, Bunce M, Welsh KI (1997) High resolution HLA-DQB1 typing using the polymerase chain reaction and sequence-specific primers. Tissue Antigens 50:688–692

    CAS  PubMed  Google Scholar 

  32. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    CAS  PubMed  Google Scholar 

  33. Oberhuber G, Vogelsang H, Stolte M, et al (1996) Evidence that intestinal intraepithelial lymphocytes are activated cytotoxic T cells in celiac disease but not in giardiasis. Am J Pathol 148:1351–1357

    CAS  PubMed  Google Scholar 

  34. Oberhuber G, Granditsch G, Vogelsang H (1999) The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 11:1185–1194

    CAS  PubMed  Google Scholar 

  35. Oliverio S, Amendola A, Rodolfo C, et al. (1999) Inhibition of "tissue" transglutaminase increases cell survival by preventing apoptosis. J Biol Chem 274:34123–34128

    CAS  PubMed  Google Scholar 

  36. Piacentini M (1995) Tissue transglutaminase: a candidate effector element of physiological cell death. Curr Top Microbiol Immunol 200:163–175

    CAS  PubMed  Google Scholar 

  37. Piredda L, Farrace MG, LoBello M, et al. (1999) Identification of "tissue" transglutaminase binding proteins in neural cells committed to apoptosis. FASEB J 13:355–364

    CAS  PubMed  Google Scholar 

  38. Powell WC, Fingelton B, Wilson CL, et al. (1999) The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9:1441–1447

    Article  CAS  PubMed  Google Scholar 

  39. Quarsten H, Molberg O, Fugger L, et al. (1999) HLA binding and T cell recognition of a tissue transglutaminase-modified gliadin epitope. Eur J Immunol 29:2506–2514

    Article  CAS  PubMed  Google Scholar 

  40. Saas P, Walker PR, Hahne M, et al. (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 99:1173–1178

    CAS  PubMed  Google Scholar 

  41. Salmela MT, MacDonald TT, Black D, et al (2002) Upregulation of matrix metalloproteinases in a model of T cell-mediated tissue injury in the gut: analysis by gene array and in situ hybridization. Gut 51:540–547

    Article  CAS  PubMed  Google Scholar 

  42. Shan L, Molberg O, Parrot I, et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    Article  CAS  PubMed  Google Scholar 

  43. Shiner M, Eran M, Freier S, et al. (1998) Are intraepithelial lymphocytes in celiac mucosa responsible for inducing programmed cell death (apoptosis) in enterocytes? Histochemical demonstration of perforins in cytoplasmic granules of intraepithelial lymphocytes. J Pediatr Gastroenterol Nutr 27:393–396

    Article  CAS  PubMed  Google Scholar 

  44. Strater J, Walczak H, Hasel C, et al. (2001) CD95 ligand (CD95L) immunohistochemistry: a critical study on 12 antibodies. Cell Death Differ 8:273–278

    Article  PubMed  Google Scholar 

  45. Szondy Z, Molnar P, Nemes Z, et al. (1997) Differential expression of tissue transglutaminase during in vivo apoptosis of thymocytes induced via distinct signalling pathways. FEBS Lett 404:307–313

    Article  CAS  PubMed  Google Scholar 

  46. Thomazy V, Fesus L (1989) Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res 255:215–224

    CAS  PubMed  Google Scholar 

  47. Troncone R, Greco L, Mayer M, et al. (1996) Latent and potential coeliac disease. Acta Paediatr (Suppl) 412:10–14

    Google Scholar 

  48. Uhlig H, Osman AA, Tanev ID, et al. (1998) Role of tissue transglutaminase in gliadin binding to reticular extracellular matrix and relation to coeliac disease autoantibodies. Autoimmunity 28:185–195

    CAS  PubMed  Google Scholar 

  49. Van de Wal Y, Kooy Y, Van Veelen P, et al. (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 161:1585–1588

    PubMed  Google Scholar 

  50. Wagelie-Steffen AL, Hartmann K, Vliagoftis H, et al. (1998) Fas ligand (FasL, CD95L, APO-1L) expression in murine mast cells. Immunology 94:569–574

    Article  CAS  PubMed  Google Scholar 

  51. Walker Smith JA, Guandalini S, Schmitz J, et al. (1990) Revised criteria for diagnosis of coeliac disease. Arch Dis Child 65:909–911

    PubMed  Google Scholar 

  52. Younes M, Schwartz MP, Finnie D, et al. (1999) Overexpression of Fas ligand (FasL) during malignant transformation in the large bowel and in Barrett's metaplasia of the esophagus. Hum Pathol 30:1309–1313

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mgr. Petra Řiháková for her technical assistance during preparation of the manuscript. This study was supported by grants IGA MZ CR NE 6197–3/2000 and MSM 151100001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Kolář.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrmann, J., Kolek, A., Koďousek, R. et al. Immunohistochemical study of the apoptotic mechanisms in the intestinal mucosa during children's coeliac disease. Virchows Arch 442, 453–461 (2003). https://doi.org/10.1007/s00428-003-0794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-003-0794-2

Keywords

Navigation