Skip to main content
Log in

A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

There are a large number of stable pancreatic ductal carcinoma cell lines that are used by researchers worldwide. Detailed data about their differentiation status and growth features are, however, often lacking. We therefore attempted to classify commonly used pancreatic carcinoma cell lines according to defined cell biological criteria. Twelve pancreatic ductal adenocarcinoma cell lines were cultured as monolayers and spheroids and graded according to their ultrastructural features. The grading system was based on the integrity of membrane structures and on the presence of mucin granules, cell organelles, nuclear and cellular polymorphism, cell polarity, and lumen formation. On the basis of the resulting scores the cell lines were classified as well, moderately, or poorly differentiated. In addition, immunocytochemistry was performed for the markers cytokeratin 7, 8, 18, 19, carcinoembryonic antigen, MUC1 MUC2, MUC5, and MUC6. The population doubling time of monolayer cultures, determined by a tetrazolium salt based proliferation assay was correlated with the ultrastructural grade. The grading of the ultrastructural features of the monolayers, and particularly of the spheroids, revealed that Capan-1 and Capan-2 cells were well differentiated; Colo357, HPAF-2, Aspc-1, A818-4, BxPc3, and Panc89 cells were moderately differentiated and PancTu-I, Panc1, Pt45P1, and MiaPaCa-2 cells poorly differentiated. Membrane-bound MUC1 staining was a characteristic of well differentiated cell lines. The population doubling time of the monolayer cultures was related to the differentiation grade. No relationship was found between the p53, K-ras, DPC4/Smad4, or p16INK4a mutation status and the grade of differentiation. We conclude that the proposed ultrastructural grading system combined with the proliferative activity provides a basis for further comparative studies of pancreatic ductal adenocarcinoma cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Adsay NV, Pierson C, Sarkar F, Abrams J, Weaver D, Conlon KC, Brennan MF, Klimstra DS (2001) Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol 25:26–42

    Article  CAS  PubMed  Google Scholar 

  2. Balagué C, Gambus G, Carrato C, Porchet N, Aubert JP, Kim YS, Real FX (1994) Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines. Gastroenterology 106:1054–1061

    PubMed  Google Scholar 

  3. Barton CM, Staddon SL, Hughes CM, Hall PA, O'Sullivan C, Klöppel G, Theis B, Russell RC, Neoptolemos J, Williamson RC (1991) Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer 64:1076–1082

    CAS  PubMed  Google Scholar 

  4. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M (1994) Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer 58:185–191

    CAS  PubMed  Google Scholar 

  5. Chen WH, Horoszewicz JS, Leong SS, Shimano T, Penetrante R, Sanders WH, Berjian R, Douglass HO, Martin EW, Chu TM (1982) Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In Vitro 18:24–34

    CAS  PubMed  Google Scholar 

  6. Fogh J, Wright WC, Loveless JD (1977) Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst 58:209–214

    CAS  PubMed  Google Scholar 

  7. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    CAS  PubMed  Google Scholar 

  8. Hamilton SR, Aaltonen LA (eds) World Health Organization classification of tumours. Pathology and genetics of tumours of the digestive system, 2000. IARC, Lyon

  9. Herzig KH, Altmannsberger M, Fölsche UR (1994) Intermediate filaments in rat pancreatic acinar tumors, human ductal carcinomas, and other gastrointestinal malignancies. Gastroenterology 106:1326–1332

    CAS  PubMed  Google Scholar 

  10. Heyderman E, Larkin SE, O'Donnell PJ, Haines AM, Warren PJ, Northeast A, Grant AG (1990) Epithelial markers in pancreatic carcinoma: immunoperoxidase localisation of DD9, CEA, EMA and CAM 5.2. J Clin Pathol 43:448–452

    CAS  PubMed  Google Scholar 

  11. Hollingsworth MA, Strawhecker JM, Caffrey TC, Mack DR (1994) Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer 57:198–203

    CAS  PubMed  Google Scholar 

  12. Hoorens A, Prenzel K, Lemoine NR, Klöppel G (1998) Undifferentiated carcinoma of the pancreas: analysis of intermediate filament profile and Ki-ras mutations provides evidence of a ductal origin. J Pathol 185:53–60

    Article  CAS  PubMed  Google Scholar 

  13. Kalthoff H, Schmiegel W, Roeder C, Kasche D, Schmidt A, Lauer G, Thiele HG, Honold G, Pantel K, Riethmuller G (1993) p53 and K-RAS alterations in pancreatic epithelial cell lesions. Oncogene 8:289–298

    CAS  PubMed  Google Scholar 

  14. Kern HF, Roher HD, von Bülow M, Klöppel G (1987) Fine structure of three major grades of malignancy of human pancreatic adenocarcinoma. Pancreas 2:2–13

    CAS  PubMed  Google Scholar 

  15. Klöppel G, Lingenthal G, von Bülow M, Kern HF (1985) Histological and fine structural features of pancreatic ductal adenocarcinomas in relation to growth and prognosis: studies in xenografted tumours and clinico-histopathological correlation in a series of 75 cases. Histopathology 9:841–856

    PubMed  Google Scholar 

  16. Kyriazis AP, Kyriazis AA, Scarpelli DG, Fogh J, Rao MS, Lepera R (1982) Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics. Am J Pathol 106:250–260

    CAS  PubMed  Google Scholar 

  17. Lehnert L, Lerch MM, Hirai Y, Kruse ML, Schmiegel W, Kalthoff H (2001) Autocrine stimulation of human pancreatic duct-like development by soluble isoforms of epimorphin in vitro. J Cell Biol 152:911–922

    Article  CAS  PubMed  Google Scholar 

  18. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15:741–747

    CAS  PubMed  Google Scholar 

  19. Löhr M, Trautmann B, Göttler M, Peters S, Zauner I, Maillet B, Klöppel G (1994) Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 69:144–151

    PubMed  Google Scholar 

  20. Lüttges J, Schemm S, Vogel I, Hedderich J, Kremer B, Klöppel G (2000) The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol 191:154–161

    Article  PubMed  Google Scholar 

  21. Lüttges J, Zamboni G, Longnecker D, Klöppel G (2001) The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol 25:942–948

    PubMed  Google Scholar 

  22. Maillet B, De Grève J, Lemoine H, Kalthoff H, Schmiegel W, Klöppel G (1993) Phenotypical differentiation and genetic alterations in human pancreatic carcinoma cell lines. Int J Pancreatol 14:72–75

    Google Scholar 

  23. Meitner PA, Kajiji SM, LaPosta-Frazier N, Bogaars HA, Jolly GA, Dexter DL, Calabresi P, Turner MD (1983) "COLO 357," a human pancreatic adenosquamous carcinoma: growth in artificial capillary culture and in nude mice. Cancer Res 43:5978–5985

    CAS  PubMed  Google Scholar 

  24. Metzgar RS, Gaillard MT, Levine SJ, Tuck FL, Bossen EH, Borowitz MJ (1982) Antigens of human pancreatic adenocarcinoma cells defined by murine monoclonal antibodies. Cancer Res 42:601–608

    CAS  PubMed  Google Scholar 

  25. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Klöppel G, Kalthoff H, Ungefroren H, Löhr M, Scarpa A (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439:798–802

    CAS  PubMed  Google Scholar 

  26. Morgan RT, Woods LK, Moore GE, Quinn LA, McGavran L, Gordon SG (1980) Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma. Int J Cancer 25:591–598

    CAS  PubMed  Google Scholar 

  27. Naumann M, Savitskaia N, Eilert C, Schramm A, Kalthoff H, Schmiegel W (1996) Frequent codeletion of p16/MTS1 and p15/MTS2 and genetic alterations in p16/MTS1 in pancreatic tumors. Gastroenterology 110:1215–1224

    CAS  PubMed  Google Scholar 

  28. Okabe T, Yamaguchi N, Ohsawa N (1983) Establishment and characterization of a carcinoembryonic antigen (CEA)- producing cell line from a human carcinoma of the exocrine pancreas. Cancer 51:662–668

    CAS  PubMed  Google Scholar 

  29. Rafiee P, Ho SB, Bresalier RS, Bloom EJ, Kim JH, Kim YS (1992) Characterization of the cytokeratins of human colonic, pancreatic, and gastric adenocarcinoma cell lines. Pancreas 7:123–131

    CAS  PubMed  Google Scholar 

  30. Santini D, Ceccarelli C, Martinelli GN, Pasquinelli G, Leone O, Marrano D, Mancini AM (1994) Expression of intermediate filaments in normal and neoplastic exocrine pancreas. Zentralbl Pathol 140:247–258

    CAS  PubMed  Google Scholar 

  31. Schussler MH, Skoudy A, Ramaekers F, Real FX (1992) Intermediate filaments as differentiation markers of normal pancreas and pancreas cancer. Am J Pathol 140:559–568

    CAS  PubMed  Google Scholar 

  32. Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA Jr, Meltzer PS, Hahn SA, Kern SE (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–2530

    CAS  PubMed  Google Scholar 

  33. Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, Pickren JW, Berjian R, Douglass HO Jr, Chu TM (1986) Characterization of a new primary human pancreatic tumor line. Cancer Invest 4:15–23

    CAS  PubMed  Google Scholar 

  34. Vila MR, Lloreta J, Schussler MH, Berrozpe G, Welt S, Real FX (1995) New pancreas cancers cell lines that represent distinct stages of ductal differentiation. Lab Invest 72:395–404

    CAS  PubMed  Google Scholar 

  35. Yunis AA, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 19:218–235

    CAS  PubMed  Google Scholar 

  36. Hirai H, Okabe T, Ahraku Y, Fujisawa M, Unabe A, Takaku F (1985) Activation of the c-k-ras oncogene in a human pancreas carcinoma. Biochem Biophys Res Commun 127:168–174

    Google Scholar 

Download references

Acknowledgements

The authors thank O. Bracker, R Köpke, B. Facompré, and A. Höltzl for their skillful technical assistance, Prof. Lüllmann-Rauch and Prof. A. Kadar for their helpful technical suggestions, and K. Dege for editing the manuscript. This work was supported by the Werner and Klara Kreitz Foundation, the IZKF, University of Kiel, and a Faculty Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bence Sipos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, B., Möser, S., Kalthoff, H. et al. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 442, 444–452 (2003). https://doi.org/10.1007/s00428-003-0784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-003-0784-4

Keywords

Navigation