Abstract
The morphology and physiology of the oogenesis have been well studied in the vector of Chagas disease Rhodnius prolixus. However, the molecular interactions that regulate the process of egg formation, key for the reproductive cycle of the vector, is still largely unknown. In order to understand the molecular and cellular basis of the oogenesis, we examined the function of the gene Bicaudal C (BicC) during oogenesis and early development of R. prolixus. We show that R. prolixus BicC (Rp-BicC) gene is expressed in the germarium, with cytoplasmic distribution, as well as in the follicular epithelium of the developing oocytes. RNAi silencing of Rp-BicC resulted in sterile females that lay few, small, non-viable eggs. The ovaries are reduced in size and show a disarray of the follicular epithelium. This indicates that Rp-BicC has a central role in the regulation of oogenesis. Although the follicular cells are able to form the chorion, the uptake of vitelline by the oocytes is compromised. We show evidence that the polarity of the follicular epithelium and the endocytic pathway, which are crucial for the proper yolk deposition, are affected. This study provides insights into the molecular mechanisms underlying oocyte development and show that Rp-BicC is important for de developmental of the egg and, therefore, a key player in the reproduction of this insect.
This is a preview of subscription content, access via your institution.






References
Aguirre SA, Frede S, Rubiolo ER, Canavoso LE (2008) Vitellogenesis in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae), a vector of Chagas' disease. J Insect Physiol 54:393–402
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
Assis MQ, Dohanik VT, Oliveira LL, Zanuncio JC, Serrao JE (2019) Evidence for a transcellular route for vitellogenin transport in the telotrophic ovary of Podisus nigrispinus (Hemiptera: Pentatomidae). Sci Rep 9:16441
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MA, Masuda H (2005) Oogenesis and egg development in triatomines: a biochemical approach. An Acad Bras Cienc 77:405–430
Aviv T, Lin Z, Ben-Ari G, Smibert CA, Sicheri F (2006) Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat Struct Mol Biol 13:168–176
Beament JW (1946) The formation and structure of the chorion of the egg in an hemipteran, Rhodnius prolixus. Q J Microsc Sci 87:393–439
Berni M, Fontenele MR, Tobias-Santos V, Caceres-Rodrigues A, Mury FB, Vionette-do-Amaral R, Masuda H, Sorgine M, da Fonseca RN, Araujo H (2014) Toll signals regulate dorsal-ventral patterning and anterior-posterior placement of the embryo in the hemipteran Rhodnius prolixus. Evodevo 5:38
Blariza MJ, Leyria J, Canavoso LE, Soria NW, Garcia BA (2016) Dynamics of expression of two vitellogenin genes in the Chagas' disease vector Triatoma infestans: Analysis throughout pre-vitellogenesis and vitellogenesis. Acta Trop 156:100–107
Bonhag PF (1958) Ovarian structure and vitellogenesis in insects. Annu Rev Entomol 3:137–160
Bouts DM, Melo AC, Andrade AL, Silva-Neto MA, Paiva-Silva Gde O, Sorgine MH, da Cunha Gomes LS, Coelho HS, Furtado AP, Aguiar EC, de Medeiros LN, Kurtenbach E, Rozental S, Cunha ESNL, de Souza W, Masuda H (2007) Biochemical properties of the major proteins from Rhodnius prolixus eggshell. Insect Biochem Mol Biol 37:1207–1221
Braz GR, Abreu L, Masuda H, Oliveira PL (2001) Heme biosynthesis and oogenesis in the blood-sucking bug, Rhodnius prolixus. Insect Biochem Mol Biol 31:359–364
Brito T, Julio A, Berni M, de Castro Poncio L, Bernardes ES, Araujo H, Sammeth M, Pane A (2018) Transcriptomic and functional analyses of the piRNA pathway in the Chagas disease vector Rhodnius prolixus. PLoS Negl Trop Dis 12:e0006760
Büning JR (1994) The insect ovary: ultrastructure, previtellogenic growth, and evolution, 1st edn. Chapman & Hall, London ; New York
Buxton PA (1930) The Biology of A Blood-Sucking Bug, Rhodnius Prolixus. Trans Royal Entomol Soc London 78:227–256
Coelho HS, Atella GC, Moreira MF, Gondim KC, Masuda H (1997) Lipophorin density variation during oogenesis on Rhodnius prolixus. Arch Insect Biochem Physiol 35:301–313
Costa-Filho A, Werneck CC, Nasciutti LE, Masuda H, Atella GC, Silva LF (2001) Sulfated glycosaminoglycans from ovary of Rhodnius prolixus. Insect Biochem Mol Biol 31:31–40
Coura JR, Borges-Pereira J (2012) Chagas disease. What is known and what should be improved: a systemic review. Rev Soc Bras Med Trop 45:286–296
Chagas CRJ (1909) Nova tripanosomíase humana. Estudos sobre a morphologia e o ciclo evolutivo do Schizotrypanum cruzi n. gen. n. esp., agente da nova entidade mórbida do homem. Mem Inst Oswaldo Cruz 1:159–218
Chicoine J, Benoit P, Gamberi C, Paliouras M, Simonelig M, Lasko P (2007) Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Dev Cell 13:691–704
Chmiel NH, Rio DC, Doudna JA (2006) Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein. RNA 12:283–291
Davey KG (1965) Reproduction in the insects. W.H. Freeman, San Francisco
Davey KG (1981) Hormonal control of vitellogenin uptake in Rhodnius prolixus Stal. Am Zool 21:701–705
de Cuevas M (2005) Drosophila Oogenesis. eLS:1–7
Dohanik VT, Goncalves WG, Oliveira LL, Zanuncio JC, Serrao JE (2018) Vitellogenin transcytosis in follicular cells of the honeybee Apis mellifera and the wasp Polistes simillimus. Protoplasma 255:1703–1712
Driever W, Nusslein-Volhard C (1988a) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104
Driever W, Nusslein-Volhard C (1988b) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93
Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
Fausto AM, Gambellini G, Mazzini M, Cecchettini A, Giorgi F (2005) Yolk uptake through the follicle epithelium in the ovary of the stick insect Carausius morosus. Arthropod Struct Develop 34:89–95
Fortes P, Salvador G, Consoli FL (2011) Ovary development and maturation in Nezara viridula (L.) (Hemiptera: Pentatomidae). Neotrop Entomol 40:89–96
Gaffield MA, Tabares L, Betz WJ (2009) Preferred sites of exocytosis and endocytosis colocalize during high- but not lower-frequency stimulation in mouse motor nerve terminals. J Neurosci 29:15308–15316. https://doi.org/10.1523/JNEUROSCI.4646-09.2009
Gamberi C, Hipfner DR, Trudel M, Lubell WD (2017) Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila. PLoS Genet 13:e1006694
Ginzburg N, Cohen M, Chipman AD (2017) Factors involved in early polarization of the anterior-posterior axis in the milkweed bug Oncopeltus fasciatus. Genesis:55
Giorgi F, Falleni A, Cecchettini A, Gremigni V (1998) A fat body derived protein is selectively sulfated in the stick insect ovary by transcytosis through the follicular epithelium. Biol Cell 90:183–197
Gondim KC, de Oliveira PL, Masuda H (1987) The roles of haemolymphatic lipoproteins in the oogenesis of Rhodnius prolixus. Mem Inst Oswaldo Cruz 82(Suppl 3):89–92
Harrison RE, Huebner E (1997) Unipolar microtubule array is directly involved in nurse cell-oocyte transport. Cell Motil Cytoskeleton 36:355–362
Huebner E (1981a) Nurse cell-oocyte interaction in the telotrophic ovarioles of an insect, Rhodnius prolixus. Tissue Cell 13:105–125
Huebner E (1981b) Oocyte-follicle cell interaction during normal oogenesis and atresia in an insect. J Ultrastruct Res 74:95–104
Huebner E, Anderson E (1970) The effects of vinblastine sulfate on the microtubular organization of the ovary of Rhodnius prolixus. J Cell Biol 46:191–198
Huebner E, Anderson E (1972a) A cytological study of the ovary of Rhodnius prolixus. Cytoarchitecture and development of the trophic chamber. J Morphol 138:1–40
Huebner E, Anderson E (1972b) A cytological study of the ovary of Rhodnius prolixus. I. The ontogeny of the follicular epithelium. J Morphol 136:459–493
Huebner E, Anderson E (1972c) A cytological study of the ovary of Rhodnius prolixusII. Oocyte differentiation. J Morphol 137:385–415
Huebner E, Injeyan H (1980) Patency of the follicular epithelium in Rhodnius prolixus: A re-examination of the hormone response and technique refinement. Can J Zool 58:1617–1625
Huebner E, Injeyan H (1981) Follicular modulation during oocyte development in an insect: formation and modification of septate and gap junctions. Dev Biol 83:101–113
Johnson PE, Donaldson LW (2006) RNA recognition by the Vts1p SAM domain. Nat Struct Mol Biol 13:177–178
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
Lavore A, Esponda-Behrens N, Pagola L, Rivera-Pomar R (2014) The gap gene Kruppel of Rhodnius prolixus is required for segmentation and for repression of the homeotic gene sex comb-reduced. Dev Biol 387:121–129
Lavore A, Pagola L, Esponda-Behrens N, Rivera-Pomar R (2012) The gap gene giant of Rhodnius prolixus is maternally expressed and required for proper head and abdomen formation. Dev Biol 361:147–155
Lavore A, Pascual A, Salinas FM, Esponda-Behrens N, Martinez-Barnetche J, Rodriguez M, Rivera-Pomar R (2015) Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. Insect Biochem Mol Biol 64:32–43
Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245
Leyria J, Orchard I, Lange AB (2020) Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci Rep 10:11431
Lutz DA, Huebner E (1980) Development and cellular differentiation of an insect telotrophic ovary (Rhodnius prolixus). Tissue Cell 12:773–794
Lutz DA, Huebner E (1981) Development of nurse cell-oocyte interactions in the insect telotrophic ovary (Rhodnius prolixus). Tissue Cell 13:321–335
Lynch JA, Roth S (2011) The evolution of dorsal-ventral patterning mechanisms in insects. Genes Dev 25:107–118
Machado EA, Atella GC, Gondim KC, de Souza W, Masuda H (1996) Characterization and immunocytochemical localization of lipophorin binding sites in the oocytes of Rhodnius prolixus. Arch Insect Biochem Physiol 31:185–196
Machado EA, Oliveira PL, Moreira MF, de Souza W, Masuda H (1998) Uptake of Rhodnius heme-binding protein (RHBP) by the ovary of Rhodnius prolixus. Arch Insect Biochem Physiol 39:133–143
Mahone M, Saffman EE, Lasko PF (1995) Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. EMBO J 14:2043–2055
Medeiros MN, Logullo R, Ramos IB, Sorgine MH, Paiva-Silva GO, Mesquita RD, Machado EA, Coutinho MA, Masuda H, Capurro ML, Ribeiro JM, Cardoso Braz GR, Oliveira PL (2011a) Transcriptome and gene expression profile of ovarian follicle tissue of the triatomine bug Rhodnius prolixus. Insect Biochem Mol Biol 41:823–831
Medeiros MN, Ramos IB, Oliveira DM, da Silva RC, Gomes FM, Medeiros LN, Kurtenbach E, Chiarini LB, Masuda H, de Souza W, Machado EA (2011b) Microscopic and molecular characterization of ovarian follicle atresia in Rhodnius prolixus Stahl under immune challenge. J Insect Physiol 57:945–953
Melo AC, Valle D, Machado EA, Salerno AP, Paiva-Silva GO, Cunha ESNL, de Souza W, Masuda H (2000) Synthesis of vitellogenin by the follicle cells of Rhodnius prolixus. Insect Biochem Mol Biol 30:549–557
Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, Spieth J, Carvalho AB, Panzera F, Lawson D, Torres AQ, Ribeiro JM, Sorgine MH, Waterhouse RM, Montague MJ, Abad-Franch F, Alves-Bezerra M, Amaral LR, Araujo HM, Araujo RN, Aravind L, Atella GC, Azambuja P, Berni M, Bittencourt-Cunha PR, Braz GR, Calderon-Fernandez G, Carareto CM, Christensen MB, Costa IR, Costa SG, Dansa M, Daumas-Filho CR, De-Paula IF, Dias FA, Dimopoulos G, Emrich SJ, Esponda-Behrens N, Fampa P, Fernandez-Medina RD, da Fonseca RN, Fontenele M, Fronick C, Fulton LA, Gandara AC, Garcia ES, Genta FA, Giraldo-Calderon GI, Gomes B, Gondim KC, Granzotto A, Guarneri AA, Guigo R, Harry M, Hughes DS, Jablonka W, Jacquin-Joly E, Juarez MP, Koerich LB, Lange AB, Latorre-Estivalis JM, Lavore A, Lawrence GG, Lazoski C, Lazzari CR, Lopes RR, Lorenzo MG, Lugon MD, Majerowicz D, Marcet PL, Mariotti M, Masuda H, Megy K, Melo AC, Missirlis F, Mota T, Noriega FG, Nouzova M, Nunes RD, Oliveira RL, Oliveira-Silveira G, Ons S, Orchard I, Pagola L, Paiva-Silva GO, Pascual A, Pavan MG et al (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 112:14936–14941
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Comput Environ Workshop (GCE):1–8
Mohler J, Wieschaus EF (1986) Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112:803–822
Nusslein-Volhard C (1977) Genetic analysis of pattern-formation in the embryo ofDrosophila melanogaster : Characterization of the maternal-effect mutantBicaudal. Wilehm Roux Arch Dev Biol 183:249–268
Nusslein-Volhard C, Roth S (1989) Axis determination in insect embryos. CIBA Found Symp 144:37–55 discussion 55-64, 92-38
Oliveira PL, Gondim KC, Guedes DM, Masuda H (1986) Uptake of yolk proteins in Rhodnius prolixus. J Insect Physiol 32:859–866
Park S, Blaser S, Marchal MA, Houston DW, Sheets MD (2016) A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development 143:864–871
Pascual, A. (2019). Genómica del desarrollo embrionario de Rhodnius prolixus. Facultad de Ciencias Exactas, Área Ciencias Biológicas UNLP,180
Pereira J, Diogo C, Fonseca A, Bomfim L, Cardoso P, Santos A, Dittz U, Miranda K, de Souza W, Gioda A, Calderon ERD, Araripe L, Bruno R, Ramos I (2020) Silencing of RpATG8 impairs the biogenesis of maternal autophagosomes in vitellogenic oocytes, but does not interrupt follicular atresia in the insect vector Rhodnius prolixus. PLoS Negl Trop Dis 14:e0008012
Raikhel AS (2005) Vitellogenesis of disease vectors, from physiology to genes. In: Marquardt W (ed) Biology of Disease Vectors. Elsevier Academic Press, London
Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 37:217–251
Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212
Ribeiro JM, Genta FA, Sorgine MH, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MM, da, S.G.V.J.J.L., Da Silva ML, Araujo RN, Gandara AC, Brosson S, Salmon D, Bousbata S, Gonzalez-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MA, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo AC, Tanaka AS, Balczun C, Oliveira JH, Goncalves RL, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GR, Oliveira PL (2014) An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 8:e2594
Ronnau M, Azevedo DO, Fialho M, Gonclaves WG, Zanuncio JC, Serrao JE (2016) Changes in follicular cells architecture during vitellogenin transport in the ovary of social Hymenoptera. Protoplasma 253:815–820
Roth S, Schupbach T (1994) The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. Development 120:2245–2257
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
Schupbach T, Roth S (1994) Dorsoventral patterning in Drosophila oogenesis. Curr Opin Genet Dev 4:502–507
Schupbach T, Wieschaus E (1986) Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux Arch Dev Biol 195:302–317
Schupbach T, Wieschaus E (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129:1119–1136
Smith CB, Betz WJ (1996) Simultaneous independent measurement of endocytosis and exocytosis. Nature 380:531–534
Snodgrass RE (1935) Principles of insect morphology, 1st edn. McGraw-Hill Book Company, inc., New York, London
Sorrivas de Lozano, V., Morales, A., Yañez, M.J. (2014). Principios y práctica de la Microscopía Electrónica. in: UAT, E. (Ed.), CONICET Bahía Blanca.
Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28(1102):1104
Urbani E (1970) A survey on some aspects of oogenesis in Dytiscus, Cybister and Hygrobia (Coleoptera). Acta Embryol Exp (Palermo) 3:281–297
Valdimarsson G, Huebner E (1989) The development of microtubular arrays in the germ tissue of an insect telotrophic ovary. Tissue Cell 21:123–138
Vieira PH, Bomfim L, Atella GC, Masuda H, Ramos I (2018) Silencing of RpATG6 impaired the yolk accumulation and the biogenesis of the yolk organelles in the insect vector R. prolixus. PLoS Negl Trop Dis 12:e0006507
Wanderley-Teixeira V, Teixeira AA, Cunha FM, Costa MK, Veiga AF, Oliveira JV (2006) Histological description of the midgut and the pyloric valve of Tropidacris collaris (Stoll, 1813) (Orthopetera: Romaleidae). Braz J Biol 66:1045–1049
Wigglesworth VB (1934) The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and metamorphosis. Q J Microscopy Sci 77:191–222
Wigglesworth VB (1939) The Principles of Insect Physiology. Methuen, London
Wigglesworth VB (1953) The origin of sensory neurons in an insect. Q J Microscopy Sci 93:93–112
Wigglesworth VB (1964) The hormonal regularion of growth and reproduction in insects. Adv Insect Physiol 2
Zhang BX, Huang HJ, Yu B, Lou YH, Fan HW, Zhang CX (2015) Bicaudal-C plays a vital role in oogenesis in Nilaparvata lugens (Hemiptera: Delphacidae). J Insect Physiol 79:19–26
Acknowledgements
The authors thank all members of Rivera-Pomar and Andrés Lavore labs for fruitful discussions, L. Canavoso (CIBICI –CCT CONICET, Córdoba, Argentina) for kindly sharing the anti-vitellin antibody, A. Nazar for her contribution to develop the in situ protocol for R. prolixus, and Reprosemyx S.A. for kindly allowing the use of their confocal facility. R.R.-P is investigator and A.P postdoctoral fellow of CONICET.
Funding
This work was funded by ANPCyT and UNNOBA.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Communicated by Siegfried Roth
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
ESM 1
Sequence alignment of BicC orthologues and phylogenetic analysis. (A) Alignment of the protein sequence of Rp-BicC with orthologues species, extracted from NCBI sequence database Harpegnathos saltator (gi|749730745 - gi|749730739-X1), Bombus terrestris (gi|808147069), Apis florea (gi|820865347), Megachile rotundata (gi|805824678), Acromyrmex echinatior (gi|332022439), Tribolium castaneum (gi|91089717), Pediculus humanus (gi|242009357), Drosophila melanogaster (gi|24584541 and NP_723949.1), Mus musculus (AAK27347.1), Nilaparvata lugens (Zhang et al. 2015), Danio rerio (NP_981965.1), Xenopus laevis (NP_001081996.1), Brugia malayi (XP_001898754.1). The amino acid conservation is visualized with black blocks, the amino acid group level conservation with gray blocks. The dashes show the absence of sequence aligned along the alignment. Oblique lines refer to continuity of alignment. (B) The pylogenetic tree was generated by Bayesian inference; the node values indicate the posterior probabilities. Tissues expression of Rp-BicC. Detection of BicC transcript by RT-PCR in Malpighian tubules (MT), Fat body (FB) and Ovaries (OV) from control and silenced (RNAiBicC) females. Upper panel: expression in females without feeding. Lower panel: expression in females 144 hours (h) post feeding. (PDF 1.23 mb)
Rights and permissions
About this article
Cite this article
Pascual, A., Vilardo, E.S., Taibo, C. et al. Bicaudal C is required for the function of the follicular epithelium during oogenesis in Rhodnius prolixus. Dev Genes Evol 231, 33–45 (2021). https://doi.org/10.1007/s00427-021-00673-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00427-021-00673-0
Keywords
- Bicaudal C
- Vitellogenesis
- Follicular cells
- Oogenesis
- Embryonic development