Advertisement

Development Genes and Evolution

, Volume 228, Issue 1, pp 1–11 | Cite as

Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids

Original Article

Abstract

Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tr ibuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in t he archenteron, apical ectoderm, and lateral ectoderm in gastrulating e mbryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.

Keywords

Notch signaling HES proteins Pigment cells Gene regulatory networks Sea urchins Neurogenic ectoderm 

Notes

Acknowledgements

Experimental data presented here were collected in the dungeon of the late Eric H. Davidson, who, along with Dave Bottjer, enthusiastically supported me and my research efforts. The manuscript was written in the laboratory of Günter P. Wagner, whose support and patience I appreciatively acknowledge. Comments from two anonymous reviewers greatly improved this manuscript. This research was supported by NSF grant IOS1240626. Another one.

Supplementary material

427_2017_599_MOESM1_ESM.docx (3.5 mb)
ESM 1 (DOCX 3564 kb)

References

  1. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776.  https://doi.org/10.1126/science.284.5415.770 CrossRefPubMedGoogle Scholar
  2. Bishop CD, MacNeil KE, Patel D, Taylor VJ, Burke RD (2013) Neural development in Eucidaris Tribuloides and the evolutionary history of the echinoid larval nervous system. Dev Biol 377(1):236–244.  https://doi.org/10.1016/j.ydbio.2013.03.006 CrossRefPubMedGoogle Scholar
  3. Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17(11):722–735.  https://doi.org/10.1038/nrm.2016.94 CrossRefPubMedGoogle Scholar
  4. Burke RD, Moller DJ, Krupke OA, Taylor VJ (2014) Sea urchin neural development and the metazoan paradigm of neurogenesis. Genesis 52(3):208–221.  https://doi.org/10.1002/dvg.22750 CrossRefPubMedGoogle Scholar
  5. Croce JC, McClay DR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137(1):83–91.  https://doi.org/10.1242/dev.044149 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311(5762):796–800.  https://doi.org/10.1126/science.1113832 CrossRefPubMedGoogle Scholar
  7. Erkenbrack EM (2016) Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins. Proc Natl Acad Sci U S A 113(46):E7202–E7211.  https://doi.org/10.1073/pnas.1612820113 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Erkenbrack EM, Ako-Asare K, Miller E, Tekelenburg S, Thompson JR, Romano L (2016) Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Dev Genes Evol 226(1):37–45.  https://doi.org/10.1007/s00427-015-0527-y CrossRefPubMedGoogle Scholar
  9. Erkenbrack EM, Davidson EH (2015) Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proc Natl Acad Sci U S A 112(30):E4075–E4084.  https://doi.org/10.1073/pnas.1509845112 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Erkenbrack EM, Petsios E (2017) A conserved role for VEGF signaling in specification of homologous mesenchymal cell types positioned at spatially distinct developmental addresses in early development of sea urchins. J Exp Zool B Mol Dev Evol 328(5):423–432.  https://doi.org/10.1002/jez.b.22743 CrossRefPubMedGoogle Scholar
  11. Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10(2):141–148.  https://doi.org/10.1038/nrg2499 CrossRefPubMedGoogle Scholar
  12. Gao F, Thompson JR, Petsios E, Erkenbrack E, Moats RA, Bottjer DJ, Davidson EH (2015) Juvenile skeletogenesis in anciently diverged sea urchin clades. Dev Biol 400(1):148–158.  https://doi.org/10.1016/j.ydbio.2015.01.017 CrossRefPubMedGoogle Scholar
  13. Garner S, Zysk I, Byrne G, Kramer M, Moller D, Taylor V, Burke RD (2016) Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms. Development 143(2):286–297.  https://doi.org/10.1242/dev.124503 CrossRefPubMedGoogle Scholar
  14. Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107(2):414–419.  https://doi.org/10.1016/0012-1606(85)90323-9 CrossRefPubMedGoogle Scholar
  15. Hinman VF, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci U S A 104(49):19404–19409.  https://doi.org/10.1073/pnas.0709994104 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kominami T, Takata H, Takaichi M (2001) Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis. Develop Growth Differ 43(6):699–707.  https://doi.org/10.1046/j.1440-169X.2001.00605.x CrossRefGoogle Scholar
  17. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233.  https://doi.org/10.1016/j.cell.2009.03.045 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lapraz F, Besnardeau L, Lepage T (2009) Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7(11):e1000248.  https://doi.org/10.1371/journal.pbio.1000248 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Materna SC (2017) Using morpholinos to probe gene networks in sea urchin. Methods Mol Biol 1565:87–104.  https://doi.org/10.1007/978-1-4939-6817-6_8 CrossRefPubMedGoogle Scholar
  20. Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364(1):77–87.  https://doi.org/10.1016/j.ydbio.2012.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Materna SC, Ransick A, Li E, Davidson EH (2013a) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375(1):92–104.  https://doi.org/10.1016/j.ydbio.2012.11.033 CrossRefPubMedGoogle Scholar
  22. Materna SC, Swartz SZ, Smith J (2013b) Notch and Nodal control forkhead factor expression in the specification of multipotent progenitors in sea urchin. Development 140(8):1796–1806.  https://doi.org/10.1242/dev.091157 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mellott DO, Thisdelle J, Burke RD (2017) Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos. Development 144(19):3602–3611.  https://doi.org/10.1242/dev.151720 CrossRefPubMedGoogle Scholar
  24. Minokawa T (2017) Comparative studies on the skeletogenic mesenchyme of echinoids. Dev Biol 427(2):212–218.  https://doi.org/10.1016/j.ydbio.2016.11.011 CrossRefPubMedGoogle Scholar
  25. Ohguro Y, Takata H, Kominami T (2011) Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus. Develop Growth Differ 53(1):110–123.  https://doi.org/10.1111/j.1440-169X.2010.01233.x CrossRefGoogle Scholar
  26. Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 105(16):5955–5962.  https://doi.org/10.1073/pnas.0711220105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474(7353):635–639.  https://doi.org/10.1038/nature10100 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Popovic M, Wienk H, Coglievina M, Boelens R, Pongor S, Pintar A (2014) The basic helix-loop-helix region of the transcriptional repressor hairy and enhancer of split 1 is preorganized to bind DNA. Proteins 82(4):537–545.  https://doi.org/10.1002/prot.24507 CrossRefPubMedGoogle Scholar
  29. Range R (2014) Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis 52(3):222–234.  https://doi.org/10.1002/dvg.22759 CrossRefPubMedGoogle Scholar
  30. Ransick A, Davidson EH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297(2):587–602.  https://doi.org/10.1016/j.ydbio.2006.05.037 CrossRefPubMedGoogle Scholar
  31. Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Dev Biol 364(2):259–267.  https://doi.org/10.1016/j.ydbio.2012.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Revilla-i-Domingo R, Oliveri P, Davidson EH (2007) A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc Natl Acad Sci U S A 104(30):12383–12388.  https://doi.org/10.1073/pnas.0705324104 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rottinger E, Croce J, Lhomond G, Besnardeau L, Gache C, Lepage T (2006) Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development 133(21):4341–4353.  https://doi.org/10.1242/dev.02603 CrossRefPubMedGoogle Scholar
  34. Sherwood DR, McClay DR (1997) Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation. Development 124(17):3363–3374PubMedGoogle Scholar
  35. Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126(8):1703–1713PubMedGoogle Scholar
  36. Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DT (2006) Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol 23:1832–1851.  https://doi.org/10.1093/molbev/msl039 CrossRefPubMedGoogle Scholar
  37. Strom A, Castella P, Rockwood J, Wagner J, Caudy M (1997) Mediation of NGF signaling by post-translational inhibition of HES-1, a basic helix-loop-helix repressor of neuronal differentiation. Genes Dev 11(23):3168–3181.  https://doi.org/10.1101/gad.11.23.3168 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129(8):1945–1955PubMedGoogle Scholar
  39. Takata H, Kominami T (2004) Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos. Zool Sci 21(10):1025–1035.  https://doi.org/10.2108/zsj.21.1025 CrossRefPubMedGoogle Scholar
  40. Takata H, Kominami T (2011) Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni. Develop Growth Differ 53(5):625–638.  https://doi.org/10.1111/j.1440-169X.2011.01278.x CrossRefGoogle Scholar
  41. Thompson JR, Erkenbrack EM, Hinman VF, McCauley BS, Petsios E, Bottjer DJ (2017) Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Proc Natl Acad Sci U S A 114(23):5870–5877.  https://doi.org/10.1073/pnas.1610603114 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Thompson JR, Petsios E, Davidson EH, Erkenbrack EM, Gao F, Bottjer DJ (2015) Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Sci Rep 5(1):15541.  https://doi.org/10.1038/srep15541 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Urben S, Nislow C, Spiegel M (1988) The origin of skeleton forming cells in the sea urchin embryo. Roux Arch Dev Biol 197(8):447–456.  https://doi.org/10.1007/BF00385678 CrossRefPubMedGoogle Scholar
  44. Wei Z, Angerer RC, Angerer LM (2011) Direct development of neurons within foregut endoderm of sea urchin embryos. Proc Natl Acad Sci U S A 108(22):9143–9147.  https://doi.org/10.1073/pnas.1018513108 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wray GA, McClay DR (1988) The origin of spicule-forming cells in a ‘primitive’ sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells. Development 103(2):305–315PubMedGoogle Scholar
  46. Wray GA, McClay DR (1989) Molecular heterochronies and heterotopies in early echinoid development. Evolution 43(4):803–813.  https://doi.org/10.1111/j.1558-5646.1989.tb05178.x CrossRefPubMedGoogle Scholar
  47. Yaguchi J, Angerer LM, Inaba K, Yaguchi S (2012) Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. Dev Biol 363(1):74–83.  https://doi.org/10.1016/j.ydbio.2011.12.024 CrossRefPubMedGoogle Scholar
  48. Yaguchi S, Yaguchi J, Wei Z, Jin Y, Angerer LM, Inaba K (2011) Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Development 138(19):4233–4243.  https://doi.org/10.1242/dev.069856 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yamazaki A, Furuzawa Y, Yamaguchi M (2010) Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida. Dev Dyn 239(12):3391–3403.  https://doi.org/10.1002/dvdy.22476 CrossRefPubMedGoogle Scholar
  50. Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T (2014) Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. Development 141(13):2669–2679.  https://doi.org/10.1242/dev.104331 CrossRefPubMedGoogle Scholar
  51. Yamazaki A, Minokawa T (2015) Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum. Gene Expr Patterns 17(2):87–97.  https://doi.org/10.1016/j.gep.2015.03.003 CrossRefPubMedGoogle Scholar
  52. Yamazaki A, Minokawa T (2016) Roles of hesC and gcm in echinoid larval mesenchyme cell development. Develop Growth Differ 58(3):315–326.  https://doi.org/10.1111/dgd.12277 CrossRefGoogle Scholar
  53. Yankura KA, Koechlein CS, Cryan AF, Cheatle A, Hinman VF (2013) Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A 110(21):8591–8596.  https://doi.org/10.1073/pnas.1220903110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Yale Systems Biology InstituteYale UniversityWest HavenUSA
  2. 2.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  3. 3.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations