Skip to main content
Log in

An eclosion hormone-like gene participates in the molting process of Palaemonid shrimp Exopalaemon carinicauda

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Molting behavior is an important physiological process related to metamorphosis, growth, and reproduction in crustaceans. Previous studies indicated that the molting process was controlled by 20-hydroxyecdysone (20E) and upstream hormones, peptides, and environmental factors, which regulate 20E function. Eclosion hormone (EH) in insect is a kind of neuropeptide that is regulated by 20E and triggers ecdysis behavior at the end of molting process. However, the function of eclosion hormone gene during the molting process in crustaceans is still largely unknown. In the present study, an eclosion hormone-like gene EcEHL was identified from Exopalaemon carinicauda. The deduced amino acid sequence of EcEHL contained a signal peptide, a typical eclosion domain, and six conserved cysteine residues forming three putative disulfide bonds. EcEHL was predominantly expressed in the epidermis, gill, and eyestalk of shrimp. In situ hybridization analysis showed that EcEHL transcripts were localized in gill cells and in medulla externa X-organ, medulla terminalis X-organ, sinus gland, and lamina ganglionaris of eyestalks. During the molting process of shrimp, EcEHL showed the highest expression level in shrimp at the premolt stage. The expression level of EcEHL in shrimp at mid premolt stage was up-regulated by injection of exogenous 20E. Silencing of EcEHL using double-stranded RNA delayed both the molting process and ecdysis rate of E. carinicauda. Furthermore, injection of exogenous 20E to shrimp at mid premolt stage (D2) could remarkably speed up the molting process and also raise the ecdysis rate of E. carinicauda. The results revealed that EcEHL might participate in the molting process of shrimp and its expression was regulated by 20E. These data will help us to understand the molecular mechanism of molting in crustacean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bao C, Yang Y, Huang H, Ye H (2015) Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis. Sci Rep 5:17055. doi:10.11038/srep17055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ES, Mykles DL (2011) Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol 172:323–330

    Article  CAS  PubMed  Google Scholar 

  • Cheng JH, Chang ES (1991) Ecdysteroid treatment delays ecdysis in the lobster, Homarus americanus. Biol Bull 181:169–174

    Article  CAS  Google Scholar 

  • Christie AE, Durkin CS, Hartline N, Ohno P, Lenz PH (2010) Bioinformatic analyses of the publicly accessible crustacean expressed sequence tags (ESTs) reveal numerous novel neuropeptide-encoding precursor proteins, including ones from members of several little studied taxa. Gen Comp Endocrinol 167:164–178

    Article  CAS  PubMed  Google Scholar 

  • Chung JS, Webster SG (2003) Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. Eur J Biochem 270:3280–3288

    Article  CAS  PubMed  Google Scholar 

  • Chung JS, Zmora N, Katayama H, Tsutsui N (2010) Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues. Gen Comp Endocrinol 166:447–454

    Article  CAS  PubMed  Google Scholar 

  • Clark AC, del Campo ML, Ewer J (2004) Neuroendocrine control of larval ecdysis behavior in Drosophila: complex regulation by partially redundant neuropeptides. J Neurosci 24:4283–4292

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira Cesar JR, Zhao B, Malecha S, Ako H, Yang J (2006) Morphological and biochemical changes in the muscle of the marine shrimp Litopenaeus vannamei during the molt cycle. Aquaculture 261:688–694

    Article  CAS  Google Scholar 

  • Drach P (1939) Mue et cycle d’intermue chez les crustace’s decapodes. Ann Inst Oceanogr Pairs NS 19:103–391

    Google Scholar 

  • Ewer J, Vente J, Truman JW (1994) Neuropeptide induction of cyclic GMP increases in the insect CNS: resolution at the level of single identifiable neurons. J Neurosci 14:7704–7712

    CAS  PubMed  Google Scholar 

  • FAO (2014) The State of World Fisheries and Aquaculture 2014. Rome. 223 pp

  • Gao Y, Zhang X, Wei J, Sun X, Yuan J, Li F, Xiang J (2015) Whole transcriptome analysis provides insights into molecular mechanisms for molting in Litopenaeus vannamei. PLoS One 10:e0144350. doi:10.1371/journal.pone.0144350

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert LI, Rewitz KF (2009) The function and evolution of the Halloween genes: the pathway to the arthropod molting hormone. In: Smagghe G (ed) Ecdysone: structures and function. Springer, Dordrecht

  • Grieneisen ML (1994) Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem Molec 24:115–132

    Article  CAS  Google Scholar 

  • Hampshire F (1966) Structure of crustecdysone, a crustacean moulting hormone. Chem Commun 2:37–38

    Google Scholar 

  • Hasson KW, Hasson J, Aubert H, Redman RM, Lightner DV (1997) A new RNA-friendly fixative for the preservation of penaeid shrimp samples for virological detection using cDNA genomic probes. J Virol Methods 66:227–236

    Article  CAS  PubMed  Google Scholar 

  • Horn DHS, Middleton EJ, Wunderlich JA, Hampshire F (1966) Identity of the moulting hormones of insects and crustaceans. Chem Commun 11:339–341

    Google Scholar 

  • Horodyski FM (1996) Neuroendocrine control of insect ecdysis by eclosion hormone. J Insect Physiol 42:917–924

    Article  CAS  Google Scholar 

  • Huang S, Wang J, Yue W, Chen J, Gaughan S, Lu W, Lu G, Wang C (2015) Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Sci Rep 5:14015. doi:10.11038/srep14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka H, Li JP, Lui AS, Kramer SJ, Schooleys DA (1992) Complete structure of eclosion hormone of Manduca sexta. Int J Pept Protein Res 39:29–35

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loeb MJ (1993) Hormonal control of growth and reproduction in the arthropods: introduction to the symposium. Integr Comp Biol 33:303–307

    Google Scholar 

  • Morton DB, Simpson PJ (2002) Cellular signaling in eclosion hormone action. J Insect Physiol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Morton DB, Truman JW (1988) The EGPs: the eclosion hormone and cyclic GMP-regulated phosphoproteins. II. Regulation of appearance by the steroid hormone 20-hydroxyecdysone in Manduca sexta. J Neurosci 8:1338–1345

    CAS  PubMed  Google Scholar 

  • Mykles DL (2011) Ecdysteroid metabolism in crustaceans. J Steroid Biochem Mol Biol 127:196–203

    Article  CAS  PubMed  Google Scholar 

  • Phlippen MK, Webster SG, Chung JS, Dircksen H (2000) Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. J Exp Biol 203:521–536

    CAS  PubMed  Google Scholar 

  • Riddiford LM, Truman JW(1978) Biochemistry of insect hormones and insect growth regulators. In Biochemistry of Insects, ed. M. Rockstein. pp. 307–357

  • Skinner DM (1985) Molting and regeneration. In: Bliss DE, Mantel LH (eds) The biology of crustacean. D.E. Bliss (ed.). Vol. 9. Integument, pigments, and hormonal processes. Academic Press, New York, pp 147–215

    Google Scholar 

  • Snyder MJ, Chang ES (1992) Role of the midgut gland in metabolism and excretion of ecdysteroids by lobsters, Homarus americanus. Gen Comp Endocrinol 85:286–296

    Article  CAS  PubMed  Google Scholar 

  • Spaziani E, Desantis K, O’Rourke BD, Wang WL, Weld JD (1997) The clearance in vivo and metabolism of ecdysone and 3-dehydroecdysone in tissues of the crab Cancer antennarius. J Exp Zool 279:609–619

    Article  CAS  Google Scholar 

  • Toullec JY, Corre E, Bernay B, Thorne MAS, Cascella K, Ollivaux C, Henry J, Clark MS (2013) Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a Euphausiid: the ice krill, Euphausia crystallorophias. PLoS One 8(8):e71609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truman JW (1971) The eclosion hormone: its release by the brain and its action on the central nervous system of silkmoths. Am Zool 10:511–512

    Google Scholar 

  • Truman JW (1978) Hormonal release of stereotyped motor programmes from the isolated nervous system of the Cecropia silkmoth. J Exp Biol 74:151–173

    CAS  Google Scholar 

  • Truman JW, (1980) Eclosion hormone: its role in coordinating ecdysial events in insects. In: Insect biology in the future, M. Locke and D.S. Smith (eds.). pp. 385–401

  • Truman JW, Copenhaver PF (1989) The larval eclosion hormone neurones in Manduca sexta: identification of the brain-proctodeal neurosecretory system. J Exp Biol 147:457–470

    Google Scholar 

  • Truman JW, Taghert PH, Copenhaver PF, Tublitz NJ, Schwartz LM (1981) Eclosion hormone may control all ecdyses in insects. Nature 291:70–71

    Article  CAS  Google Scholar 

  • Truman JW, Rountree DB, Reiss SE, Schwartz LM (1983) Ecdysteroids regulate the release and action of eclosion hormone in the tobacco hornworm, Manduca sexta (L.) J Insect Physiol 29:895–900

    Article  CAS  Google Scholar 

  • Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem 43:49–63

    Article  CAS  Google Scholar 

  • Vijayan K, Diwan A (1995) Influence of temperature, salinity, pH and light on molting and growth in the Indian white prawn Penaeus indicus (Crustacea: Decapoda: Penaeidae) under laboratory conditions. Asian Fish Sci 8:63–72

    Google Scholar 

  • Webster SG (1993) High-affinity binding of putative moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) to membrane-bound receptors on the Y-organ of the shore crab Carcinus maenus. Proceedings of the Royal Society of London B Biological Sciences 251:53–59

    Article  CAS  Google Scholar 

  • Webster SG, Wilcockson DC, Mrinalini SJH (2013) Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas. Gen Comp Endocrinol 182:54–64

    Article  CAS  PubMed  Google Scholar 

  • Wilcockson DC, Webster SG (2008) Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon in the green shore crab Carcinus maenas. Gen Comp Endocrinol 156:113–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31461143007, 31302171), National High Technology Research and Development Program of China (863 Program, No. 2014AA093501), China Agriculture Research System-47 (CARS-47), and the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhua Li.

Additional information

Communicated by Volker G. Hartenstein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Li, S., Wang, Z. et al. An eclosion hormone-like gene participates in the molting process of Palaemonid shrimp Exopalaemon carinicauda . Dev Genes Evol 227, 189–199 (2017). https://doi.org/10.1007/s00427-017-0580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-017-0580-9

Keywords

Navigation