Advertisement

Development Genes and Evolution

, Volume 226, Issue 6, pp 413–422 | Cite as

Observations on germ band development in the cellar spider Pholcus phalangioides

  • Natascha Turetzek
  • Nikola-Michael Prpic
Original Article

Abstract

Most recent studies of spider embryonic development have focused on representatives of the species-rich group of entelegyne spiders (over 80 % of all extant species). Embryogenesis in the smaller spider groups, however, is less well studied. Here, we describe the development of the germ band in the spider species Pholcus phalangioides, a representative of the haplogyne spiders that are phylogenetically the sister group of the entelegyne spiders. We show that the transition from radially symmetric embryonic anlage to the bilaterally symmetric germ band involves the accumulation of cells in the centre of the embryonic anlage (primary thickening). These cells then disperse all across the embryonic anlage. A secondary thickening of cells then appears in the centre of the embryonic anlage, and this thickening expands and forms the segment addition zone. We also confirm that the major part of the opisthosoma initially develops as a tube shaped structure, and its segments are then sequentially folded down on the yolk during inversion. This special mode of opisthosoma formation has not been reported for entelegyne spiders, but a more comprehensive sampling of this diverse group is necessary to decide whether this peculiarity is indeed lacking in the entelegyne spiders.

Keywords

Embryonic development Haplogyne spiders Pholcus phalangioides Opisthosoma Leg length Engrailed 

Notes

Acknowledgments

We thank Matthias Pechmann for advice on cloning the engrailed gene from Pholcus phalangioides and Maarten Hilbrant for comments on the manuscript. We also thank two anonymous reviewers for valuable comments that significantly improved the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (grant numbers PR 1109/4-1 and PR 1109/6-1 to N.M.P.). Additional financial backing has been received from the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences (GGNB), the Göttingen Center for Molecular Biosciences (GZMB), and the University of Göttingen (GAU). N.T. is supported by a Christiane-Nüsslein-Volhard-Foundation fellowship and a “Women in Science” Award by L’Oréal Deutschland and the Deutsche UNESCO-Kommission. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Competing interests

N.M.P. is a member of the Editorial Board of Development Genes and Evolution serving as Communicating Editor for the Topical Collection “Size & Shape”.

References

  1. Abzhanov A, Kaufman TC (2000) Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol 227:673–689CrossRefPubMedGoogle Scholar
  2. Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces dpp signals received by germ disc epithelial cells. Development 130:1735–1747CrossRefPubMedGoogle Scholar
  3. Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357CrossRefPubMedGoogle Scholar
  4. Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by hedgehog signaling in the early spider embryo. Development 137:1263–1273CrossRefPubMedGoogle Scholar
  5. Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 24:1765–1771CrossRefPubMedGoogle Scholar
  6. Claparède É (1862) Recherches sur l’évolution des araignées. Natuurkundige Verhandelingen uuitgegeven door het Provinciaal Utrechtsch Genootschap von Kunsten en Wetenschappen. Deel I, Stuk 1. C van der Post Jr, UtrechtGoogle Scholar
  7. Crome W (1963) Embryonalentwicklung ohne “Umrollung” (=Reversion) bei Vogelspinnen (Araneae: Orthognatha). Deutsche Entomologische Zeitschrift Neue Folge 10:83–95CrossRefGoogle Scholar
  8. Crome W (1964) Eikokon, Embryonalstadien und frühe Jugendformen von Conothele arboricola Pocock (Araneae: Ctenizidae). Zoologische Jahrbücher Abteilung für Systematik, Ökologie und Geographie der Tiere 91:411–450Google Scholar
  9. Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250PubMedGoogle Scholar
  10. Edgar A, Bates C, Larkin K, Black S (2015) Gastrulation occurs in multiple phases at two distinct sites in Latrodectus and Cheiracanthium spiders. EvoDevo 6:33CrossRefPubMedPubMedCentralGoogle Scholar
  11. Emerton JH (1872) Observations on the development of Pholcus. Proc Boston Soc Nat Hist 14:393–395 Plate IIGoogle Scholar
  12. Holm Å (1940) Studien über die Entwicklung und Entwicklungsbiologie der Spinnen. Zoologiska Bidrag från Uppsala 19:1–214 Plates 1-11Google Scholar
  13. Holm Å (1952) Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zoologiska Bidrag från Uppsala 29:293–424 Plates 1-6Google Scholar
  14. Huber BA (2011) Revision and cladistic analysis of Pholcus and closely related taxa (Araneae, Pholcidae). Bonner Zoologische Monographien 58:1–509Google Scholar
  15. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WG (2008) Cupiennius salei And Achaearanea tepidariorum: spider models for investigating evolution and development. BioEssays 30:487–498CrossRefPubMedGoogle Scholar
  16. Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216CrossRefPubMedGoogle Scholar
  17. Pechmann M, Khadjeh S, Turetzek N, McGregor AP, Damen WG, Prpic NM (2011) Novel function of Distal-less as a gap gene during spider segmentation. PLoS Genet 7:e1002342CrossRefPubMedPubMedCentralGoogle Scholar
  18. Prpic NM, Schoppmeier M, Damen WGM (2008a) Collection and fixation of spider embryos. Cold Spring Harbor Protoc 3:930–932. doi: 10.1101/pdb.prot5067 Google Scholar
  19. Prpic NM, Schoppmeier M, Damen WGM (2008b) Whole-mount in situ hybridization of spider embryos. Cold Spring Harbor Protoc 3:933–936. doi: 10.1101/pdb.prot5068 Google Scholar
  20. Sandeman R, Sandeman D (1991) Stages in the development of the embryo of the fresh-water crayfish Cherax destructor. Roux’s arch. Dev Biol 200:27–37Google Scholar
  21. Scholtz G (1992) Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Roux’s arch. Dev Biol 202:36–48Google Scholar
  22. Turetzek N, Pechmann M, Schomburg C, Schneider J, Prpic NM (2016) Neofunctionalization of a duplicate dachshund gene underlies the evolution of a novel leg segment in arachnids. Mol Biol Evol 33:109–121CrossRefPubMedGoogle Scholar
  23. Weygoldt P (1996) Chelicerata, Spinnentiere. In: Westheide W, Rieger R (eds) Spezielle Zoologie. Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer Verlag, Stuttgart, pp. 449–497Google Scholar
  24. Wolff C, Hilbrant M (2011) The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 8:15CrossRefPubMedPubMedCentralGoogle Scholar
  25. Yoshikura M (1954) Embryological studies on the liphistiid spider Heptathela kimurai, part I. Kumamoto J Sci Ser B (Biology and Geology) 3:41–48 Plate IGoogle Scholar
  26. Yoshikura M (1958) On the development of a purse-web spider, Atypus karschi Dönitz. Kumamoto J Sci Ser B Sect 2 Biol 3(2):73–86Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Johann-Friedrich-Blumenbach-Institut für Zoologie und AnthropologieGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Göttingen Center for Molecular Biosciences (GZMB)GöttingenGermany

Personalised recommendations