Skip to main content

Advertisement

Log in

Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

A fundamental question in biology is “how is growth differentially regulated during development to produce organs of particular sizes?” We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305:1462–1465

    Article  CAS  PubMed  Google Scholar 

  • Aegerter-Wilmsen T, Aegerter CM, Hafen E, Basler K (2007) Model for the regulation of size in the wing imaginal disc of Drosophila. Mech Dev 124:318–326

    Article  CAS  PubMed  Google Scholar 

  • Affolter M, Basler K (2007) The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 8:663–674

    Article  CAS  PubMed  Google Scholar 

  • Behringer RR, Rasweiler JJT, Chen CH, Cretekos CJ (2009) Genetic regulation of mammalian diversity. Cold Spring Harb Symp Quant Biol 74:297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beiriger A, Sears KE (2014) Cellular basis of differential limb growth in postnatal gray short-tailed opossums (Monodelphis domestica). J Exp Zool B Mol Dev Evol 322:221–229

    Article  PubMed  Google Scholar 

  • Buchmann A, Alber M, Zartman JJ (2014) Sizing it up: the mechanical feedback hypothesis of organ growth regulation. Semin Cell Dev Biol

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  • Chodniewicz D, Klemke RL (2004) Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta 1692:63–76

    Article  CAS  PubMed  Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244

    Article  CAS  PubMed  Google Scholar 

  • Crickmore MA (2009) GE Prize essay. The molecular basis of size differences. Science 326:1360–1361

    Article  CAS  PubMed  Google Scholar 

  • Crickmore MA, Mann RS (2006) Hox control of organ size by regulation of morphogen production and mobility. Science 313:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore MA, Mann RS (2008) The control of size in animals: insights from selector genes. BioEssays 30:843–853

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossley PH, Minowada G, MacArthur CA, Martin GR (1996) Roles for FGF8 in the induction, initiation and maintenance of chick limb development. Cell 84:127–136

    Article  CAS  PubMed  Google Scholar 

  • Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17:276–287

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Teran M, Ros MA (2008) The apical ectodermal ridge: morphological aspects and signaling pathways. Int J Dev Biol 52:857–871

    Article  PubMed  Google Scholar 

  • Fernandez-Teran M, Hinchcliffe JR, Ros MA (2006) Birth and death of cells in limb development: a mapping study. Dev Dyn 235:2521–2537

    Article  CAS  PubMed  Google Scholar 

  • Gros J, Hu JK, Vinegoni C, Feruglio PF, Weissleder R, Tabin CJ (2010) WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr Biol 20:1993–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM (1999) Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146:389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habas R, Dawid IB (2005) Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks SK, Ryzhova L, Shin NY, Brabek J (2003) Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8:d982–d996

    Article  CAS  PubMed  Google Scholar 

  • Heikinheimo M, Lawshe A, Shackleford GM, Wilson DB, MacArthur CA (1994) FGF-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hockman D, Mason MK, Jacobs DS, Illing N (2009) The role of early development in mammalian limb diversification: a descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus). Dev Dyn 238:965–979

    Article  PubMed  Google Scholar 

  • Hubler M, Molineaux AC, Keyte A, Schecker T, Sears KE (2013) Development of the marsupial shoulder girdle complex: a case study in Monodelphis domestica. Evol Dev 15:18–27

    Article  CAS  PubMed  Google Scholar 

  • Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI (2007) On the mechanism of wing size determination in fly development. Proc Natl Acad Sci U S A 104:3835–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kango-Singh M, Singh A (2009) Regulation of organ size: insights from the Drosophila Hippo signaling pathway. Dev Dyn 238:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Keyte AL, Smith KK (2010) Developmental origins of precocial forelimbs in marsupial neonates. Development 137:4283–4294

    Article  CAS  PubMed  Google Scholar 

  • Lewandoski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26:460–463

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS, Johnson RL (2010) Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A 107:1437–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood R, Bresnick J, Hornbruch A, Mahony C, Morton N, Colquhoun K, Martin P, Lumsden A, Dickson C, Mason I (1995) A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr Biol 5:797–806

    Article  CAS  PubMed  Google Scholar 

  • Mariani FV, Ahn CP, Martin GR (2008) Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Castellanos C, Edgar BA (2002) A characterization of the effects of Dpp signaling on cell growth and proliferation in the Drosophila wing. Development 129:1003–1013

    CAS  PubMed  Google Scholar 

  • Mate KE, Robinson ES, Vandeberg JL, Pedersen RA (1994) Timetable of in vivo embryonic development in the grey short-tailed opossum (Monodelphis domestica). Mol Reprod Dev 39:365–374

    Article  CAS  PubMed  Google Scholar 

  • McCrady E (1938) The embryology of the opossum. Wistar Institute of Anatomy and Biology, Philadelphia

    Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    Article  CAS  PubMed  Google Scholar 

  • Molineaux AC, Maier JA, Schecker T, Sears KE (2015) Exogenous retinoic acid induces digit reduction in opossums (Monodelphis domestica) by disrupting cell death and proliferation, and apical ectodermal ridge and zone of polarizing activity function. Birth Defects Res A Clin Mol Teratol 103:225–234

    Article  CAS  PubMed  Google Scholar 

  • Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore TY, Organ CL, Edwards SV, Biewener AA, Tabin CJ, Jenkins FA Jr, Cooper KL (2015) Multiple phylogenetically distinct events shaped the evolution of limb skeletal morphologies associated with bipedalism in the jerboas. Curr Biol 25:2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Neufeld DA, Zhao WG (1995) Bone regrowth after digit tip amputation in mice is equivalent in adults and neonates. Wound Repair Regen 3:461–466

    Article  CAS  PubMed  Google Scholar 

  • Niswander L, Tickle C, Vogel A, Booth I, Martin GR (1993) FGF4 replaces the apical ectodermal ridgge and directs outgrowth and patterning of the limb. Cell 75:579–587

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi H, Yoshioka H, Tanaka A, Kawakami A, Nohno T, Noji S (1994) Involvement of the androgen-induced growth factor (FGF-8) gene in mouse enbryogenesis and morphogenesis. Biochem Biophys Res Commun 204:882–888

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru N, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF 10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF 8, an apical ectodermal factor. Development 124:2235–2244

    CAS  PubMed  Google Scholar 

  • Penzo-Mendez AI, Stanger BZ (2015) Organ-Size Regulation in Mammals. Cold Spring Harb Perspect Biol 7:a019240

    Article  PubMed  Google Scholar 

  • Powell-Braxton L, Hollingshead P, Giltinan D, Pitts-Meek S, Stewart T (1993) Inactivation of the IGF-I gene in mice results in perinatal lethality. Ann N Y Acad Sci 692:300–301

    Article  CAS  PubMed  Google Scholar 

  • Rizzo R, Lammer EJ, Parano E, Pavone L, Argyle JC (1991) Limb reduction defects in humans associated with prenatal isotretinoin exposure. Teratology 44:599–604

    Article  CAS  PubMed  Google Scholar 

  • Rogulja D, Rauskolb C, Irvine KD (2008) Morphogen control of wing growth through the Fat signaling pathway. Dev Cell 15:309–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar-Ciudad I (2010) Morphological evolution and embryonic developmental diversity in metazoa. Development 137:531–539

    Article  CAS  PubMed  Google Scholar 

  • Sanger TJ, Revell LJ, Gibson-Brown JJ, Losos JB (2012) Repeated modification of early limb morphogenesis programmes underlies the convergence of relative limb length in Anolis lizards. Proc Biol Sci 279:739–748

    Article  PubMed  Google Scholar 

  • Sears KE (2008) Molecular determinants of bat wing development. Cells Tissues Organs 187:6–12

    Article  CAS  PubMed  Google Scholar 

  • Sears KE (2009) Differences in the timing of prechondrogenic limb development in mammals: the marsupial-placental dichotomy resolved. Evolution 63:2193–2200

    Article  PubMed  Google Scholar 

  • Sears KE (2011) Novel insights into the regulation of limb development from “natural” mammalian mutants. BioEssays 33:327–331

    Article  PubMed  Google Scholar 

  • Sears KE (2014) Differences in growth generate the diverse palate shapes of New World leaf-nosed bats (Order Chiroptera, Family Phyllostomidae). Evol Biol 41:12–21

    Google Scholar 

  • Sears KE, Behringer RR, Rasweiler JJ, Niswander LA (2006) Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci U S A 103:6581–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears KE, Bormet AK, Rockwell A, Powers LE, Cooper LN, Wheeler MB (2011) Digit reduction in the domesticated pig, Sus scrofa. Evol Dev 13:533–541

    Article  PubMed  Google Scholar 

  • Sears KE, Doroba CK, Xie D, Zhong S (2012a) Molecular determinants of marsupial limb integration and constraint. In: Müller J, Asher R (eds) From clone to bone: the synergy of morphological and molecular tools in paleobiology. Cambridge University Press, Cambridge, pp 257–278

    Chapter  Google Scholar 

  • Sears KE, Patel A, Hübler M, Cao X, VandeBerg JL, Zhong S (2012b) Disparate Igf1 expression and growth in the fore- and hind limbs of a marsupial (Monodelphis domestica). J Exp Zool B Mol Devel Evol 318:279–293

    Article  CAS  Google Scholar 

  • Sears KE, Maier JA, Rivas-Astroza M, Poe R, Zhong S, Kosog K, Marcot JD, Behringer RR, Cretekos CJ, Rasweiler JJT, Rapti Z (2015) The relationship between gene network structure and expression variation among individuals and species. PLoS Genet 11:e1005398

    Article  PubMed  PubMed Central  Google Scholar 

  • Siesser PM, Meenderink LM, Ryzhova L, Michael KE, Dumbauld DW, Garcia AJ, Kaverina I, Hanks SK (2008) A FAK/Src chimera with gain-of-function properties promotes formation of large peripheral adhesions associated with dynamic actin assembly. Cell Motil Cytoskeleton 65:25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Stanger BZ (2008) The biology of organ size determination. Diabetes Obes Metab 10(Suppl 4):16–22

    Article  PubMed  Google Scholar 

  • Stanger BZ, Tanaka AJ, Melton DA (2007) Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445:886–891

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508

    Article  CAS  PubMed  Google Scholar 

  • Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumaneng K, Russell RC, Guan KL (2012) Organ size control by Hippo and TOR pathways. Curr Biol 22:R368–R379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyngaarden LA, Vogeli KM, Ciruna BG, Wells M, Hadjantonakis AK, Hopyan S (2010) Oriented cell motility and division underlie early limb bud morphogenesis. Development 137:2551–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu K, Ornitz DM (2008) FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development 135:483–491

    Article  CAS  PubMed  Google Scholar 

  • Zeller R (2010) The temporal dynamics of vertebrate limb development, teratogenesis and evolution. Curr Opin Genet Dev 20:384–390

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, Tachedjian M, Zhu Y, Zhou P, Jiang X, Ng J, Yang L, Wu L, Xiao J, Feng Y, Chen Y, Sun X, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–460

    Article  CAS  PubMed  Google Scholar 

  • Zuniga A (2015) Next generation limb development and evolution: old questions, new perspectives. Development 142:3810–3820

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Sears Lab past and present and Dr. Jonathan Marcot for advice and assistance on this project, the Cell and Developmental Biology Department at UIUC for allowing us access to its tissue culture facilities, and Dr. Andrew Suarez for allowing us to use his microscope. This research was supported by National Science Foundation Grant IOS 1257873 and an Arnold Beckman Award from the University of Illinois Research Board to KES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Sears.

Additional information

Communicated by Nico Posnien and Nikola-Michael Prpic

This article is part of the Special Issue “Size and Shape: Integration of morphometrics, mathematical modeling, developmental and evolutionary biology”, Guest Editors: Nico Posnien—Nikola-Michael Prpic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowling, A., Doroba, C., Maier, J.A. et al. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica . Dev Genes Evol 226, 235–243 (2016). https://doi.org/10.1007/s00427-016-0549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0549-0

Keywords

Navigation