Skip to main content
Log in

Molecular evolution analysis of WUSCHEL-related homeobox transcription factor family reveals functional divergence among clades in the homeobox region

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Gene families have been shown to play important roles in plant evolution and are associated with diversification and speciation. Genes of WUSCHEL-related homeobox family of transcription factors have important functions in plant development and are correlated with the appearance of evolutionary novelties. There are several published studies related to this family, but little is known about the relationships among the main clades in the phylogeny and the molecular evolution of the family. In this study, we obtained a well-resolved Bayesian phylogenetic tree establishing the relationships among the main clades and determining the position of Selaginella moellendorffii WOX genes. Moreover, a correlation was identified between the number of genes in the genomes and the events of whole-genome duplications. The intron-exon structure is more consistent across the modern clade, which appeared more recently in the WOX evolutionary history, and coincides with the development of higher complexity in plant species. No positive selection was detected among sites through the branches in the tree. However, with regard to the main clades, functional divergence among certain amino acids in the homeodomain region was found. Relaxed purifying selection could be the main driving force in the evolution of these genes and in agreement with some genes have been demonstrated to be functionally redundant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Anisimova M, Yang Z (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24:1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L et al (1993) Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:528–580

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf 5:1–19

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Article  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Gu X (2001) Maximum likelihood approach for gene family evolution under functional divergence. Mol Biol Evol 18:453–464

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Zou Y, Su Z, Huang W, Zhou Z, Arendsee A, Zeng Y (2013) An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol 30:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  CAS  PubMed  Google Scholar 

  • Lian G, Ding Z, Wang Q, Xu J (2014) Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. Sci World J 2014:e534140

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. Available online at http://mesquiteproject.org

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. PNAS 102:5454–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  CAS  PubMed  Google Scholar 

  • Nardmann J, Werr W (2013) Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. New Phytol 199:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Nardmann J, Reisewitz P, Werr W (2009) Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol Biol Evol 26:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(1253):1256

    Google Scholar 

  • Rogozin IB, Wolf Y, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, van de Peer Y, van de Poele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600

    Article  PubMed  Google Scholar 

  • Wang P, Li C, Li C, Zhao C, Xia H, Zhao S, Hou L, Gao C, Wan S, Wang X (2015) Identification and expression dynamics of three WUSCHEL related homeobox 13 (WOX13) genes in peanut. Dev Genes Evol 225:221–233

  • Wong WSW, Yang Z, Goldman N, Nielsen R (2004) Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 12:2723–2724

    Article  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Li T, Yin H, Weston DJ, Tuskan GA, Tschaplinski TJ, Yang X (2013) Evolutionary analyses of non-family genes in plants. Plant J 73:788–797

    Article  CAS  PubMed  Google Scholar 

  • Yockteng R, Almeida AMR, Morioka K, Alvarez-Buylla ER, Specht CD (2013) Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Mol Biol Evol 30:2401–2422

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zong J, Liu J, Yin J, Zhang D (2010) Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol 52:1016–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Programa de Pós–Graduação em Genética e Biologia Molecular–Universidade Federal do Rio Grande do Sul (PPGBM-UFRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreta B. Freitas.

Additional information

Communicated by Sureshkumar Balasubramanian

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 375 kb)

Fig. S2

(DOCX 186 kb)

Fig. S3

(DOCX 267 kb)

Fig. S4

(DOCX 715 kb)

Table S1

(DOCX 76.9 kb)

Table S2

(DOCX 49.5 kb)

Table S3

(DOCX 15.2 kb)

Table S4

(DOCX 24.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segatto, A.L.A., Thompson, C.E. & Freitas, L.B. Molecular evolution analysis of WUSCHEL-related homeobox transcription factor family reveals functional divergence among clades in the homeobox region. Dev Genes Evol 226, 259–268 (2016). https://doi.org/10.1007/s00427-016-0545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0545-4

Keywords

Navigation