Skip to main content

Advertisement

Log in

Exploring the effects of gene dosage on mandible shape in mice as a model for studying the genetic basis of natural variation

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Mandible shape in the mouse is a complex trait that is influenced by many genetic factors. However, little is known about the action of single genes on adult mandible shape so far, since most developmentally relevant genes are already required during embryogenesis, i.e., knockouts lead to embryonic death or severe deformations, before the mandible is fully formed. We employ here a geometric morphometric approach to identify subtle phenotypic differences caused by dosage effects of candidate genes. We use mouse strains with specific gene modifications (knockouts and knockins) to compare heterozygous animals with controls from the same stock, which is expected to be equivalent to a change of gene expression of the respective locus. Such differences in expression level are also likely to occur as part of the natural variation. We focus on Bmp pathway genes (Bmp4, its antagonist Noggin, and combinations of Bmp5-7 genotypes), but include also two other developmental control genes suspected to affect mandible development in some way (Egfr and Irf6). In addition, we study the effects of Hoxd13, as well as an extracellular matrix constituent (Col2a1). We find that subtle but significant shape differences are caused by differences in gene dosage of several of these genes. The changes seen for Bmp4 and Noggin are partially compatible with the action of these genes known from birds and fish. We find significant shape changes also for Hoxd13, although this gene has so far only been implicated in skeletal patterning processes of the limbs. Comparing the effect sizes of gene dosage changes to the variation found in natural populations of mice as well as quantitative trait loci (QTL) effects on mandible shape, we find that the effect sizes caused by gene dosage changes are at the lower end of the spectrum of natural variation, but larger than the average additive effects found in QTL studies. We conclude that studying gene dosage effects have the potential to provide new insights into aspects of craniofacial development, variation, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305:1462–1465

    Article  PubMed  CAS  Google Scholar 

  • Albertson RC, Streelmann JT, Kocher TD, Yelick PC (2005) Integration and evolution of the Cichlid mandible: the molecular basis of alternate feeding strategies. PNAS 102:16287–16292

    Article  PubMed  CAS  Google Scholar 

  • Albertson RC, Yelick PC (2007) Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish. Dev Biol 15:505–515

    Article  Google Scholar 

  • Atchley WR (1991) A model for development and evolution of complex morphological structures. Biol Rev 66:101–157

    Article  PubMed  CAS  Google Scholar 

  • Boell L, Tautz D (2011) Micro-evolutionary divergence patterns of mandible shapes in wild house mouse (Mus musculus) populations. BMC Evol Biol 11:306

    Article  PubMed  Google Scholar 

  • Boell L, Gregorova S, Forejt J, Tautz D (2011) A comparative assessment of mandible shape in a consomic strain panel of the house mouse (Mus musculus)—implications for epistasis and evolvability of quantitative traits. BMC Evol Biol 11:309

    Article  PubMed  Google Scholar 

  • Bonilla-Claudio M, Wang J, Bai Y, Klysik E, Selever J, Martin JF (2012) Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 139:709–719

    Article  PubMed  CAS  Google Scholar 

  • Bruneau S, Johnson KR, Yamamoto M, Kuroiwa A, Duboule D (2001) The mouse Hoxd13(spdh) mutation, a polyalanine expansion similar to human type II synpolydactyly (SPD), disrupts the function but not the expression of other Hoxd genes. Dev Biol 237(2):345–353

    Article  PubMed  CAS  Google Scholar 

  • Cantile M, Franco R, Tschan A, Baumhoer D, Zlobec I, Schiavo G, Forte I, Bihl M, Liguori G, Botti G, Tornillo L, Karamitopoulou-Diamantis E, Terracciano L, Cillo C (2009) HOX D13 expression across 79 tumor tissue types. Int J Cancer 125(7):1532–1541

    Article  PubMed  CAS  Google Scholar 

  • Cooper WJ, Albertson RC (2008) Quantification and variation in experimental studies of morphogenesis. Dev Biol 15:295–302

    Article  Google Scholar 

  • Cubillos FA, Yansouni J, Khalili H, Balzergue S, Elftieh S, Martin-Magniette M-L, Serrand Y, Lepiniec L, Baud S, Dubreucq B, Renou J-P, Camilleri C, Loudet O (2012) Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures. BMC Genomics 13:117

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Hackenmiller R, Berg L, Jean F, Nakayama T, Thomas G, Christian JL (2001) The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Gen Dev 15:2797–2802

    CAS  Google Scholar 

  • Delker C, Quint M (2011) Expression level polymorphisms: heritable traits shaping natural variation. Trends Plant Sci 16:481–488

    PubMed  CAS  Google Scholar 

  • Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S et al (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9:e1000582. doi:10.1371/journal.pbio.1000582

    Article  PubMed  CAS  Google Scholar 

  • Dollé P, Dierich A, LeMeur M, Schimmang T, Schuhbaur B, Chambon P, Duboule D (1993) Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75(3):431–441

    Article  PubMed  Google Scholar 

  • Hallgrímsson B, Brown JJY, Ford-Hutchinson AF, Sheets HD, Zelditch ML, Jirik FR (2006) The brachymorph mouse and the developmental basis for canalization and morphological integration. Evol Dev 8:61–73

    Article  PubMed  Google Scholar 

  • Hill C, Reeves RH, Richtsmeier JT (2007) Effects of aneuploidy on skull growth in a mouse model of Down syndrome. J Anat 210:394–405

    Article  PubMed  Google Scholar 

  • Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6:e1001154

    Article  PubMed  Google Scholar 

  • Ingraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, Malik MI, Dunnwald M, Goudy SL, Lovett M, Murray JC, Schutte BC (2006) Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet 38:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg CP, Leamy LJ, Routman EJ, Cheverud JM (2001) Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157:785–802

    PubMed  CAS  Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Gen 11:623–635

    CAS  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Kuss P, Villavicencio-Lorini P, Witte F, Klose J, Albrecht AN, Seemann P, Hecht J, Mundlos S (2009) Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis. J Clin Invest 119(1):146–156. doi:10.1172/JCI36851

    PubMed  CAS  Google Scholar 

  • Leamy LJ, Klingenberg CP, Sherratt E, Wolf JB, Cheverud JM (2008) A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity 101:518–526

    Article  PubMed  CAS  Google Scholar 

  • LeClair EE, Mui SR, Huang A, Topczewska JM, Topczewski J (2009) Craniofacial skeletal defects of adult zebrafish Glypican 4 (knypek) mutants. Dev Dyn 238:2550–2563

    Article  PubMed  Google Scholar 

  • Liu W, Selever J, Murali D, Sun X, Brugger SM, Ma L, Schwartz RJ, Maxson R, Furuta Y, Martin JF (2005) Threshold-specific requirements for Bmp4 in mandibular development. Dev Biol 283(2):282–293

    Article  PubMed  CAS  Google Scholar 

  • Lyons KM, Hogan B, Robertson EJ (1995) Colocalization of Bmp7 and Bmp2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. MOD 50:71–83

    PubMed  CAS  Google Scholar 

  • Maddox BK, Garofalo S, Horton WA, Richardson MD, Trune DR (1998) Craniofacial and otic capsule abnormalities in a transgenic mouse strain with a Col2a1 mutation. J Craniofac Genet Dev Biol 18:195–201

    PubMed  CAS  Google Scholar 

  • Malone JH, Cho DE-Y, Mattiuzzo NR, Artieri GC, Jiang L, Dale RK, Smith HE, McDaniel J, Munro S, Salit M, Andrews J, Przytycka TM, Oliver B (2012) Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biol 13:r28

    Article  PubMed  CAS  Google Scholar 

  • McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1252

    Article  PubMed  CAS  Google Scholar 

  • Miettinen PJ, Chin JR, Shum L, Slavkin HC, Shuler CF, Derynck R, Werb Z (1999) Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Nat Gen 22:69–73

    Article  CAS  Google Scholar 

  • Parsons KJ, Albertson RC (2009) Roles for Bmp4 and CaM1in shaping the jaw: evo-devo and beyond. Annu Rev Genet 43:369–388

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (2005a) tpsDig, digitize landmarks and outlines, version 2.05. Department of Ecology and Evolution, State University of New York at Stony Brook, Software

  • Rohlf FJ (2005b) tpsUtil, file utility program, version 1.26. Department of Ecology and Evolution, State University of New York at Stony Brook, Software

  • Salsi V, Vigano MA, Cocchiarella F, Mantovani R, Zappavigna V (2008) Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 317(2):497–507

    Article  PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  • Schunke AC, Bromiley PA, Tautz D, Thacker NA (2012) TINA manual landmarking tool: software for the precise digitization of 3D landmarks. Front Zool 9:6. doi:10.1186/1742-9994-9-6

    Article  PubMed  Google Scholar 

  • Solloway MJ, Robertson EJ (1999) Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126:1753–1768

    PubMed  CAS  Google Scholar 

  • Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ (1998) Mice lacking Bmp6 function. Dev Genet 22:321–339

    Article  PubMed  CAS  Google Scholar 

  • Stottmann RW, Anderson RM, Klingensmith J (2001) The BMP antagonists Chordin and Noggin have essential but redundant roles in mouse mandibular outgrowth. Dev Biol 240:457–473

    Article  PubMed  CAS  Google Scholar 

  • Tilleman H, Hakim V, Novikov O, Liser K, Nashelsky L, Di Salvio M, Krauthammer M, Scheffner O, Maor I, Mayseless O, Meir I, Kayam G, Sela-Donenfeld D, Simeone A, Brodski C (2010) Bmp5/7 in concert with the mid-hindbrain organizer control development of noradrenergic locus coeruleus neurons. Mol Cell Neurosci 45:1–11

    Article  PubMed  CAS  Google Scholar 

  • Vaahtokari A, Åberg T, Jernvall J, Keränen S, Thesleff I (1996) The enamel knot as a signalling center in the developing mouse tooth. MOD 54:39–43

    PubMed  CAS  Google Scholar 

  • Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24:390–397

    Article  PubMed  CAS  Google Scholar 

  • Willmore KE, Zelditch ML, Young N, Ah-Seng A, Lozanoff S, Hallgrìmsson B (2006) Canalization and developmental stability in the Brachyrrhine mouse. J Anat 208:361–372

    Article  PubMed  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9(17):2105–2116

    Article  PubMed  CAS  Google Scholar 

  • Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430(6995):85–88

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Jiang T-X, Shen J-Y, Widelitz RB, Chuong C-M (2006) Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution. Dev Dyn 235:1400–1412

    Article  PubMed  Google Scholar 

  • Wu P, Jiang T-X, Suksaweang S, Widelitz RB, Chuong C-M (2004) Molecular shaping of the beak. Science 305:1465–1466

    Article  PubMed  CAS  Google Scholar 

  • Zelditch M, Swiderski D, Sheets DH, Fink W (2004) Geometric morphometrics for biologists. Elsevier, New York

    Google Scholar 

  • Zouvelou V, Luder H-U, Mitsiadis TA, Graf D (2009) Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. J Exp Zool (Mol Dev Evol) 312B:361–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Christine Pfeifle and Heike Harre for their help with mouse breeding. The work was funded by institutional resources of the Max-Planck Society to DT. Financial support to BCS (#DE13513) and YAK (#1F31DE022696-01) came from the NIH National Institute of Dental and Craniofacial Research. Financial support to CB came from the Israel Science Foundation (grant no. 1391/11). LFP is a member of the International Max Planck Research School (IMPRS) for Evolutionary Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Tautz.

Additional information

Communicated by A. Kispert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boell, L., Pallares, L.F., Brodski, C. et al. Exploring the effects of gene dosage on mandible shape in mice as a model for studying the genetic basis of natural variation. Dev Genes Evol 223, 279–287 (2013). https://doi.org/10.1007/s00427-013-0443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-013-0443-y

Keywords

Navigation