Skip to main content

Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution

Abstract

The emergence of multicellularity is regarded as one of the major evolutionary events of life. This transition unicellularity/pluricellularity was acquired independently several times (King 2004). The acquisition of multicellularity implies the emergence of cellular cohesion and means of communication, as well as molecular mechanisms enabling the control of morphogenesis and body plan patterning. Some of these molecular tools seem to have predated the acquisition of multicellularity while others are regarded as the acquisition of specific lineages. Morphogenesis consists in the spatial migration of cells or cell layers during embryonic development, metamorphosis, asexual reproduction, growth, and regeneration, resulting in the formation and patterning of a body. In this paper, our aim is to review what is currently known concerning basal metazoans—sponges’ morphogenesis from the tissular, cellular, and molecular points of view—and what remains to elucidate. Our review attempts to show that morphogenetic processes found in sponges are as diverse and complex as those found in other animals. In true epithelial sponges (Homoscleromorpha), as well as in others, we find similar cell/layer movements, cellular shape changes involved in major morphogenetic processes such as embryogenesis or larval metamorphosis. Thus, sponges can provide information enabling us to better understand early animal evolution at the molecular level but also at the cell/cell layer level. Indeed, comparison of molecular tools will only be of value if accompanied by functional data and expression studies during morphogenetic processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007a) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2:e1031

    PubMed  Google Scholar 

  2. Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS, Martindale MQ, Degnan BM (2007b) The evolutionary origin of Hedgehog proteins. Curr Biol 17:836–837

    Google Scholar 

  3. Adamska M, Larroux C, Adamski M, Green K, Lovas E et al (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12:494–518

    PubMed  CAS  Google Scholar 

  4. Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology 114:1–10

    PubMed  Google Scholar 

  5. Adell T, Gamulin V, Perovic-Ottstadt S, Wiens M, Korzhev M et al (2004) Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 59:41–50

    PubMed  CAS  Google Scholar 

  6. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford

  7. Barolo S, Posakony JW (2002) Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 16:1167–1181

    PubMed  CAS  Google Scholar 

  8. Bauma B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Sem Cell Dev Biol 19:294–308

    Google Scholar 

  9. Beloussov LV (1998) The dynamic architecture of a developing organism. Kluwer Academic, Berlin

    Google Scholar 

  10. Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, Schmid V (1998) The cnidarian premises of metazoan evolution: from triploblasty, to coelom formation, to metamery. Ital J Zool 65:5–9

    Google Scholar 

  11. Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exper Zool 263:284–302

    CAS  Google Scholar 

  12. Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exper Zool 246:271–284

    CAS  Google Scholar 

  13. Borojevic R (1967) La ponte et le développement de Polymastia robusta (demosponges). Cah Biol Mar 8:1–6

    Google Scholar 

  14. Boury-Esnault N, Ereskovsky AV, Bezac C, Tokina DB (2003) Larval development in Homoscleromorpha (Porifera, Demospongiae) first evidence of basal membrane in sponge larvae. Invert Biol 122:187–202

    Google Scholar 

  15. Boute N, Exposito J-Y, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

    PubMed  CAS  Google Scholar 

  16. Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132:2907–2916

    PubMed  CAS  Google Scholar 

  17. De Vos L (1977) Study using the scanning electron microscope of the cells of the sponge, Ephydatia fluviatilis. Arch Biol 88:1–14

    Google Scholar 

  18. Degnan BM, Degnan SM, Naganuma T, Morse DE (1993) The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res 21:3479–3484

    PubMed  CAS  Google Scholar 

  19. Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opinion Gen Dev 19:1–9

    Google Scholar 

  20. Derelle R, Lopez P, Guyader HL, Manuel M (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 9:212–219

    PubMed  CAS  Google Scholar 

  21. Duboscq O, Tuzet O (1937) L’ovogenèse, la fécondation et les premiers stades du développement des Eponges calcaires. Arch Zool Exp Gén 79:157–316

    Google Scholar 

  22. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    PubMed  CAS  Google Scholar 

  23. Ereskovsky AV (2000) Reproduction cycles and strategies of the cold-water sponges Halisarca dujardini (Demospongiae, Halisarcida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea. Biol Bull 198:77–87

    PubMed  CAS  Google Scholar 

  24. Ereskovsky AV (2007) Sponge embryology: the past, the present and the future. In: Lobo-Hajdu G, Custódio MR, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional 28, Rio de Janeiro, pp. 41–52

  25. Ereskovsky AV (2010) The comparative embryology of sponges. Springer, Dordrecht

    Google Scholar 

  26. Ereskovsky AV, Boury-Esnault N (2002) Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. J Nat Hist 36:1761–1775

    Google Scholar 

  27. Ereskovsky AV, Dondua AK (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zool Anzeiger 245:65–76

    Google Scholar 

  28. Ereskovsky AV, Gonobobleva EL (2000) New data on embryonic development of Halisarca dujardini Johnston, 1842 (Demospongiae, Halisarcida). Zoosystema 22:355–368

    Google Scholar 

  29. Ereskovsky AV, Korotkova GP (1999) On the reasons of ontogenesis pecularity in sponges. Zhurnal Obshch Bio 60:318–332

    Google Scholar 

  30. Ereskovsky AV, Tokina DB (2007) Asexual reproduction in homoscleromorph sponges (Porifera; Homoscleromorpha). Mar Biol 151:425–434

    Google Scholar 

  31. Ereskovsky AV, Willenz P (2008) Larval development in Guancha arnesenae (Porifera, Calcispongiae, Calcinea). Zoomorphology 127:175–187

    Google Scholar 

  32. Ereskovsky AV, Tokina DB, Bezac C, Boury-Esnault N (2007) Metamorphosis of cinctoblastula larvae (Homoscleromorpha, Porifera). J Morphol 268:518–528

    PubMed  Google Scholar 

  33. Ereskovsky AV, Konyukov PY, Tokina DB (2009) Morphogenesis accompanying larval metamorphosis in Plakina trilopha (Porifera, Homoscleromorpha). Zoomorphology 129:21–31

    Google Scholar 

  34. Fahey B, Degnan BM (2010) Origin of animal epithelia: insights from the sponge genome. Evol Dev 12:601–617

    PubMed  CAS  Google Scholar 

  35. Fahey B, Larroux C, Woodcroft BJ, Degnan BM (2008) Does the high gene density in the sponge NK homeobox gene cluster reflect limited regulatory capacity? Biol Bull 214:205–217

    PubMed  CAS  Google Scholar 

  36. Fell PE (1993) Porifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, Vol. 6, Pt. A: asexual propagation and reproductive strategies. Oxford & IBH Publishing Co, New Delhi, pp 1–44

    Google Scholar 

  37. Franzen W (1988) Oogenesis and larval development of Scypha ciliata (Porifera, Calcarea). Zoomorphology 107:349–357

    Google Scholar 

  38. Fristrom D (1988) The cellular basis of epithelial morphogenesis. A review. Tissue Cell 20:645–690

    PubMed  CAS  Google Scholar 

  39. Fristrom DK, Fristrom JW (1975) The mechanism of evagination of imaginal discs of Drosophila melanogaster: I. General considerations. Dev Biol 43:1–23

    CAS  Google Scholar 

  40. Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U (2007) Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 310:264–279

    PubMed  CAS  Google Scholar 

  41. Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Dev Growth Differ 52:1–14

    PubMed  CAS  Google Scholar 

  42. Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12:275–287

    PubMed  CAS  Google Scholar 

  43. Gauthier M, Degnan BM (2008) The transcription factor NF-kappaB in the demosponge Amphimedon queenslandica: insights on the evolutionary origin of the Rel homology domain. Dev Genes Evol 218:23–32

    PubMed  CAS  Google Scholar 

  44. Gazave E, Lapebie P, Renard E, Bezac C, Boury-Esnault N et al (2008) NK homeobox genes with choanocyte-specific expression in homoscleromorph sponges. Dev Genes Evol 218:479–489

    PubMed  CAS  Google Scholar 

  45. Gazave E, Lapebie P, Richards GR, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E (2009) Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9:249. doi:10.1186/1471-2148-9-249

    PubMed  Google Scholar 

  46. Gazave E, Lapebie P, Renard E, Vacelet J, Rocher C, Ereskovsky AV, Lavrov DV, Borchiellini C (2010) Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha). PLoS One 5(12):e14290

    PubMed  CAS  Google Scholar 

  47. Gazave E, Lapebie P, Ereskovsky AV, Vacelet J, Renard E, Cardenas P, Borchiellini C (2012) No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia 687:3–10. doi:10.1007/s10750-011-0842-x

    Google Scholar 

  48. Gerhart J (1998) Warkany lecture: signaling pathways in development. Teratology 60:226–239

    Google Scholar 

  49. Gonobobleva EL, Ereskovsky AV (2004a) Polymorphism in free-swimming larvae of Halisarca dujardini (Demospongiae, Halisarcida). Boll Mus Ist Biol Univ Genova 68:349–356

    Google Scholar 

  50. Gonobobleva EL, Ereskovsky AV (2004b) Metamorphosis of the larva of Halisarca dujardini (Demospongiae, Halisarcida). Bull Inst Roy Sci Nat Belgique Biol 74:101–115

    Google Scholar 

  51. Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006) The Wnt code: cnidarians signal the way. Oncogene 25:7450–7460

    PubMed  CAS  Google Scholar 

  52. Hardin J (1988) The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–324

    Google Scholar 

  53. Harrington MJ, Hong E, Brewster R (2009) Comparative analysis of neurulation: first impressions do not count. Mol Reprod Dev 76:954–965

    PubMed  CAS  Google Scholar 

  54. Harrison FW, De Vos L (1991) Porifera. In: Harrison F (ed) Microscopic anatomy of invertebrates. 2: Placozoa, Porifera, Cnidaria and Ctenophora. Wiley-Liss Inc, New York, pp 29–89

    Google Scholar 

  55. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154:8–20

    PubMed  CAS  Google Scholar 

  56. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dynam 233:706–720

    CAS  Google Scholar 

  57. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW et al (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Roy Soc B Biol Sci 276:4261–4270

    Google Scholar 

  58. Hill A, Boll W, Ries C, Warner L, Osswalt M, Hill M, Noll M (2010) Origin of Pax and Six gene families in sponges: single PaxB and Six1/2 orthologs in Chalinula loosanoffi. Dev Biol 343:106–123

    PubMed  CAS  Google Scholar 

  59. Holland PW, Booth HA, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5:47

    PubMed  Google Scholar 

  60. Holstien K, Rivera A, Windsor P, Ding S, Leys SP, Hill M, Hill A (2010) Expansion, diversification, and expression of T-box family genes in Porifera. Dev Genes Evol 220:251–262

    PubMed  CAS  Google Scholar 

  61. Hooper J, van Soest R (eds) (2002) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum, New York

    Google Scholar 

  62. Humbert-David N, Garrone R (1993) A six-armed, tenascin-like protein extracted from the Porifera Oscarella tuberculata (Homosclerophorida). Eur J Biochem 216:255–260

    PubMed  CAS  Google Scholar 

  63. Keller R, Davidson LA, Shook DS (2003) How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205

    PubMed  Google Scholar 

  64. Kimberly EL, Hardin J (1998) Bottle cells are required for the initiation of primary invagination in the sea urchin embryo. Dev Biol 204:235–250

    PubMed  CAS  Google Scholar 

  65. King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325

    PubMed  CAS  Google Scholar 

  66. King N, Westbrook MJ, Young SL, Kuo A, Abedin M et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    PubMed  CAS  Google Scholar 

  67. Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF (2010) Cadherins in the human placenta–epithelial–mesenchymal transition (EMT) and placental development. Placenta 31:747–755

    PubMed  CAS  Google Scholar 

  68. Kraus YA (2006) Morphomechanical programming of morphogenesis in Cnidarian embryos. Int J Dev Biol 50:267–275

    PubMed  Google Scholar 

  69. Kraus Y, Technau U (2006) Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev Genes Evol 216:119–132

    PubMed  Google Scholar 

  70. Kruse M, Mikoc A, Cetkovic H, Gamulin V, Rinkevich B et al (1994) Molecular evidence for the presence of a developmental gene in the lowest animals: identification of a homeobox-like gene in the marine sponge Geodia cydonium. Mech Ageing Dev 77:43–54

    PubMed  CAS  Google Scholar 

  71. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    PubMed  CAS  Google Scholar 

  72. Lapébie P, Gazave E, Ereskovsky A, Derelle R, Bezac C, Renard E et al (2009) WNT/beta-catenin signalling and epithelial patterning in the homoscleromorph sponge Oscarella. PLoS One 4:e5823

    PubMed  Google Scholar 

  73. Lapébie P, Borchiellini C, Houliston E (2011) Dissecting the PCP pathway: one or more pathways? Does a separate Wnt-Fz-Rho pathway drive morphogenesis? BioEssays 33:759–768

    PubMed  Google Scholar 

  74. Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M et al (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8:150–173

    PubMed  CAS  Google Scholar 

  75. Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM (2007) The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 17:1–5

    Google Scholar 

  76. Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25:980–996

    PubMed  CAS  Google Scholar 

  77. Lecuit T, Le Goff L (2007) Orchestrating size and shape during morphogenesis. Nature 450:189–192

    PubMed  CAS  Google Scholar 

  78. Ledger PW (1975) Septate junctions in the calcareous sponge Sycon ciliatum. Tissue Cell 7:13–18

    PubMed  CAS  Google Scholar 

  79. Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17:157–167

    PubMed  Google Scholar 

  80. Lévi C (1956) Ètude des Halisarca de Roscoff. Embryologie et systematique des Démosponges. Trav Stat Biol Roscoff NS 7:3–181

    Google Scholar 

  81. Leys SP (2004) Gastrulation in sponges. In: Stern CD (ed) Gastrulation. From cell to embryo. Cold Spring Harbor Lab, New York, pp 23–32

    Google Scholar 

  82. Leys SP, Degnan BM (2002) Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to chanocytes. Invert Biol 121:171–189

    Google Scholar 

  83. Leys SP, Ereskovsky AV (2006) Embryogenesis and larval differentiation in sponges. Can J Zool 84:262–287

    Google Scholar 

  84. Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145

    PubMed  CAS  Google Scholar 

  85. Magie CR, Martindale MQ (2008) Cell-cell adhesion in the Cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214:218–232

    PubMed  Google Scholar 

  86. Maldonado M, Bergquist PR (2002) Phylum Porifera. In: Young CM, Sewel MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, Barcelona, pp 21–50

    Google Scholar 

  87. Maldonado M, Riesgo A (2008) Reproductive output in a Mediterranean population of the homosclerophorid Corticium candelabrum (Porifera, Demospongiae), with notes on the ultrastructure and behavior of the larva. Mar Ecol 29:298–316

    Google Scholar 

  88. Mallatt J, Craig CW, Yoder MJ (2010) Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol Phyl Evol 55:1–17

    Google Scholar 

  89. Manuel M (2009) Early evolution of symmetry and polarity in metazoan body plans. C R Biol 332:184–209

    PubMed  Google Scholar 

  90. Mercurio M, Corriero G, Gaino E (2006) Sessile and non-sessile morphs of Geodia cydonium (Jameson) (Porifera, Demospongiae) in two semi-enclosed Mediterranean bays. Mar Biol 148:489–501

    Google Scholar 

  91. Mergner H (1971) Chapter 1: Cnidaria. In: Reveberi G (ed) Experimental embryology of marine and fresh-water invertebrates. North-Holland Publishing Company, New York, pp 1–84

    Google Scholar 

  92. Meroz-Fine E, Shefer S, Ilan M (2005) Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Mar Biol 147:243–250

    Google Scholar 

  93. Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY et al (2009) The origin of Metazoa: a transition from temporal to spatial cell differentiation. BioEssays 31:758–768

    PubMed  CAS  Google Scholar 

  94. Momose T, Houliston E (2007) Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 5(4):e70

    PubMed  Google Scholar 

  95. Momose T, Derelle R, Houliston E (2008) A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135:2105–2113

    PubMed  CAS  Google Scholar 

  96. Moore MA (2001) The role of chemoattraction in cancer metastases. Bioessays 23:674–676

    PubMed  CAS  Google Scholar 

  97. Mukherjee K, Bürglin TR (2007) Comprehensive analysis of animal TAL homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol 65:137–153

    PubMed  CAS  Google Scholar 

  98. Müller W, Frank U, Teo R, Mokady O, Guette C, Plickert G (2007) Wnt signaling inhydroid development: ectopic heads and giant buds induced by GSK-3beta inhibitors. Int J Dev Biol 51:211–220

    PubMed  Google Scholar 

  99. Nichols SA, Dirks W, Pearse JS, King N (2006) Early evolution of animal cell signaling and adhesion genes. PNAS 103:12451–12456

    PubMed  CAS  Google Scholar 

  100. Oda H, Tsukita S, Takeichi M (1998) Dynamic behavior of the cadherinbased cell–cell adhesion system during Drosophila gastrulation. Dev Biol 203:435–450

    PubMed  CAS  Google Scholar 

  101. Ouyang G, Wang Z, Fang X, Liu J, Yang CJ (2010) Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 67:2605–2618

    PubMed  CAS  Google Scholar 

  102. Perovic S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Stifanic M et al (2003) Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 5:240–250

    PubMed  CAS  Google Scholar 

  103. Peterson KJ, Sperling EA (2007) Poriferan ANTP genes: primitively simple or secondarily reduced? Evol Dev 9:405–408

    PubMed  Google Scholar 

  104. Philipp I, Aufschnaiter R, Ozbek S, Pontasch S, Jenewein M, Watanabe H et al (2009) Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. PNAS 106:4290–4295

    PubMed  Google Scholar 

  105. Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712

    PubMed  CAS  Google Scholar 

  106. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M et al (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9(3):e1000602. doi:10.1371/journal.pbio.1000602

    PubMed  CAS  Google Scholar 

  107. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson et al (2010) Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol E 27:1983–1987

    CAS  Google Scholar 

  108. Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4:39–49

    PubMed  CAS  Google Scholar 

  109. Przybylo JA, Radisky DC (2007) Matrix metalloproteinase-induced epithelial–mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 39:1082–1088

    PubMed  CAS  Google Scholar 

  110. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov ATA et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    PubMed  CAS  Google Scholar 

  111. Quintin S, Gally C, Labouesse M (2008) Epithelial morphogenesis in embryos: asymmetries, motors and brakes. Trends Genet 24:221–230

    PubMed  CAS  Google Scholar 

  112. Raich WB, Agbunag C, Hardin J (1999) Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr Biol 9:1139–1146

    PubMed  CAS  Google Scholar 

  113. Richards GS, Degnan BM (2009) The dawn of developmental signaling in the Metazoa. Cold Spring Harbor Symp Quant Biol 74:81–90

    PubMed  CAS  Google Scholar 

  114. Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18:1156–1161

    PubMed  CAS  Google Scholar 

  115. Rivera AS, Hammel JU, Haen KM, Danka ES, Cieniewicz B et al (2011) RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria. BMC Biotechnol 11:67

    PubMed  CAS  Google Scholar 

  116. Ryan JF, Baxevanis AD (2007) Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2:37

    PubMed  Google Scholar 

  117. Ryan JF, Pang K, Program NCS, Mullikin JC, Martindale MQ, Baxevanis AD (2010) The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. Evo Devo 1:9. doi:10.1186/2041-9139-1-9

    Google Scholar 

  118. Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nat Cell Biol 5:711–719

    PubMed  CAS  Google Scholar 

  119. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF et al (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS One 2:e506

    PubMed  Google Scholar 

  120. Sara A, Cerrano C, Sara M (2002) Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868. Polar Biol 5:425–431

    Google Scholar 

  121. Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H et al (2009) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoan” hypothesis. PLoS Biol 7(1):e20

    PubMed  Google Scholar 

  122. Schock F, Perrimon N (2002) Molecular mechanisms of epithelial morphogenesis. Annu Rev Cell Dev Biol 18:463–493

    PubMed  CAS  Google Scholar 

  123. Sebé-Pedrós A, de Mendoza A, Lang FB, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254. doi:10.1093/molbev/msq309

    PubMed  Google Scholar 

  124. Seimiya M, Ishiguro H, Miura K, Watanabe Y, Kurosawa Y (1994) Homeobox-containing genes in the most primitive Metazoa, the sponges. Eur J Biochem 221:219–225

    PubMed  CAS  Google Scholar 

  125. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of choanozoa and the origin of animals. PLoS One 3:e2098

    PubMed  Google Scholar 

  126. Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev 120:1351–1383

    PubMed  CAS  Google Scholar 

  127. Simpson TL (1984) The cell biology of sponges. Springer, New York

    Google Scholar 

  128. Sperling EA, Peterson KJ, Pisani D (2009) Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa. Mol Biol Evol 26:2261–2274

    PubMed  CAS  Google Scholar 

  129. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME et al (2010a) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    PubMed  CAS  Google Scholar 

  130. Srivastava M, Larroux C, Lu DR, Mohanty K, Chapman J, Degnan BM, Rokhsar DS (2010b) Early evolution of the LIM homeobox gene family. BMC Biol 8:4. doi:10.1186/1741-7007-8-4

    PubMed  Google Scholar 

  131. Sternlicht MD, Bissell MJ, Werb Z (2000) The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19:1102–1113

    PubMed  CAS  Google Scholar 

  132. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    PubMed  CAS  Google Scholar 

  133. Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Gen 35:747–784

    CAS  Google Scholar 

  134. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev Mol Cell Biol 7:131–142

    Google Scholar 

  135. Thiery JP, Acloque H, Huang YJH, Nieto A (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    PubMed  CAS  Google Scholar 

  136. Tyler S (2003) Epithelium—the primary building block for metazoan complexity. Integr Comp Biol 4:355–363

    Google Scholar 

  137. Vanderburg CR, Hay ED (1996) E-Cadherin transforms embryonic corneal fibroblasts to stratified epithelium with desmosomes. Acta Anatomica 157:87–104

    PubMed  CAS  Google Scholar 

  138. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18:1131–1143

    PubMed  CAS  Google Scholar 

  139. Watanabe Y (1978) The development of two species of Tetilla (Demospongiae). Nat Sci Rep Ochanomizu Univ 29:71–106

    Google Scholar 

  140. Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Gustav Fischer, New York

    Google Scholar 

  141. Whittaker JR (1997) Chapter 18 Cephalochordates, the Lancelets. In: Gilbert SF, Raunio AM (eds) Embryology, constructing the organism. Sinauer Associates Inc, Sunderland, pp 365–382

    Google Scholar 

  142. Windsor PJ, Leys SP (2010) Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evol Dev 12:484–493

    PubMed  CAS  Google Scholar 

  143. Wolpert L (1998) Principles of development. Current Biology, London

    Google Scholar 

  144. Yamasaki A, Watanabe Y (1991) Involvement of maternal choanocyte during embryogenesis in Sycon calcar-avis, Calcarea, Porifera. Zool Sci 8:1107

    Google Scholar 

  145. Young PE, Pesacreta TC, Kiehart DP (1991) Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development 111:1–14

    PubMed  CAS  Google Scholar 

  146. Zallen JA (2007) Planar polarity and tissue morphogenesis. Cell 129:1051–1063

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly funded by an RFBR grant (grant no. 09-04-00337) and by a PICS-RFBR grant (grant no. 5581 and 10-04-91053). The English language has been revised by Thomas Smith.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ereskovsky.

Additional information

Communicated by R. Sommer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ereskovsky, A.V., Renard, E. & Borchiellini, C. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Dev Genes Evol 223, 5–22 (2013). https://doi.org/10.1007/s00427-012-0399-3

Download citation

Keywords

  • Porifera
  • Morphogenesis
  • Epithelial morphogenesis
  • Wnt pathway