Skip to main content
Log in

Thyroid hormone-regulated expression of nuclear lamins correlates with dedifferentiation of intestinal epithelial cells during Xenopus laevis metamorphosis

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

In the Xenopus laevis intestine during metamorphosis, which is triggered by thyroid hormone (TH), the adult epithelium develops and replaces the larval one undergoing apoptosis. We have previously shown that progenitor/stem cells of the adult epithelium originate from some differentiated larval epithelial cells. To investigate molecular mechanisms underlying larval epithelial dedifferentiation into the adult progenitor/stem cells, we here focused on nuclear lamin A (LA) and lamin LIII (LIII), whose expression is generally known to be correlated with the state of cell differentiation. We analyzed the spatiotemporal expression of LA and LIII during X. laevis intestinal remodeling by reverse transcription PCR, Western blotting, and immunohistochemistry. At the onset of natural metamorphosis, when the adult epithelial progenitor cells appear as small islets, the expression of LA is down-regulated, but that of LIII is up-regulated only in the islets. Then, as the adult progenitor cells differentiate, the expression of LA is up-regulated, whereas that of LIII is down-regulated in the adult cells. As multiple intestinal folds form, adult epithelial cells positive for LIII become restricted only to the troughs of the folds. In addition, we have shown that TH up- or down-regulates the expression of these lamins in the premetamorphic intestine as during natural metamorphosis. These results indicate that TH-regulated expression of LA and LIII closely correlates with dedifferentiation of the epithelial cells in the X. laevis intestine, suggesting the involvement of the lamins in the process of dedifferentiation during amphibian metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberio R, Johnson AD, Stick R, Campbell KH (2005) Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 307(1):131–141. doi:10.1016/j.yexcr.2005.02.028

    Article  PubMed  CAS  Google Scholar 

  • Benavente R, Krohne G, Franke WW (1985) Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell 41(1):177–190. doi:0092-8674(85)90072-8

    Article  PubMed  CAS  Google Scholar 

  • Bru T, Clarke C, McGrew MJ, Sang HM, Wilmut I, Blow JJ (2008) Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res 314(14):2634–2642. doi:10.1016/j.yexcr.2008.05.009

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502. doi:10.1038/nature06357

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Bjerknes M (1985) Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat Rec 211(4):420–426

    Article  PubMed  CAS  Google Scholar 

  • Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24(1):177–185. doi:10.1634/stemcells.2004-0159

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853. doi:10.1101/gad.1652708

    Article  PubMed  CAS  Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. In: Lofts B (ed) Physiology of amphibia, vol 3. Academic, New York, pp 467–599

    Google Scholar 

  • Doring V, Stick R (1990) Gene structure of nuclear lamin LIII of Xenopus laevis; a model for the evolution of IF proteins from a lamin-like ancestor. EMBO J 9(12):4073–4081

    PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A (2003) The nuclear lamina and its functions in the nucleus. Int Rev Cytol 226:1–62

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Hartman R, Matsuda H, Shi Y-B (2006) Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis. Cell Tissue Res 324(1):105–116. doi:10.1007/s00441-005-0099-7

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Hartman R, Fu L, Amano T, Shi Y-B (2007a) Evidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development. Mech Dev 124(1):11–22. doi:10.1016/j.mod.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Kajita M, Fujimoto K, Yaoita Y, Ishizuya-Oka A (2007b) Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis. Dev Dyn 236(8):2338–2345. doi:10.1002/dvdy.21252

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Buchholz DR, Shi Y-B, Ishizuya-Oka A (2011) Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine. Stem Cells 29(1):154–161. doi:10.1002/stem.560

    Article  PubMed  CAS  Google Scholar 

  • Hourdry J, Dauca M (1977) Cytological and cytochemical changes in the intestinal epithelium during anuran metamorphosis. Int Rev Cytol (Supple) 5:337–385

    Google Scholar 

  • Ishizuya-Oka A, Shi Y-B (2007) Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Dev Dyn 236(12):3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Ueda S (1996) Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res 286(3):467–476

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Ueda S, Inokuchi T, Amano T, Damjanovski S, Stolow M, Shi Y-B (2001) Thyroid hormone-induced expression of sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation 69(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Hasebe T, Buchholz DR, Kajita M, Fu L, Shi Y-B (2009) Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. FASEB J 23(8):2568–2575. doi:10.1096/fj.08-128124

    Article  PubMed  CAS  Google Scholar 

  • Kikuyama S, Kawamura K, Tanaka S, Yamamoto K (1993) Aspects of amphibian metamorphosis: hormonal control. Int Rev Cytol 145:105–148

    Article  PubMed  CAS  Google Scholar 

  • Kordylewski L (1983) Light and electron microscopic observations of the development of intestinal musculature in Xenopus. Z Mikrosk Anat Forsch 97(4):719–734

    PubMed  CAS  Google Scholar 

  • Lourim D, Kempf A, Krohne G (1996) Characterization and quantitation of three B-type lamins in Xenopus oocytes and eggs: increase of lamin LI protein synthesis during meiotic maturation. J Cell Sci 109(Pt 7):1775–1785

    PubMed  CAS  Google Scholar 

  • Madara JL, Trier JS (1994) Functional morphology of the mucosa of the small intestine. In: LR J (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven, New York, pp 1577–1622

    Google Scholar 

  • Marshall JA, Dixon KE (1978) Cell specialization in the epithelium of the small intestine of feeding Xenopus laevis tadpoles. J Anat 126(1):133–144

    PubMed  CAS  Google Scholar 

  • McAvoy JW, Dixon KE (1977) Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool 202:129–138

    Article  Google Scholar 

  • Mitalipov SM, Zhou Q, Byrne JA, Ji WZ, Norgren RB, Wolf DP (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum Reprod 22(8):2232–2242. doi:10.1093/humrep/dem136

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Furusawa T, Ohnuki M, Goel S, Tokunaga T, Minami N, Yamada M, Ohsumi K, Imai H (2007) Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol Reprod Dev 74(10):1268–1277. doi:10.1002/mrd.20691

    Article  PubMed  CAS  Google Scholar 

  • Moreira PN, Robl JM, Collas P (2003) Architectural defects in pronuclei of mouse nuclear transplant embryos. J Cell Sci 116(Pt 18):3713–3720. doi:10.1242/jcs.00692

    Article  PubMed  CAS  Google Scholar 

  • Mukhi S, Mao J, Brown DD (2008) Remodeling the exocrine pancreas at metamorphosis in Xenopus laevis. Proc Natl Acad Sci USA 105(26):8962–8967. doi:10.1073/pnas.0803569105

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland, New York

    Google Scholar 

  • Peter M, Nigg EA (1991) Ectopic expression of an A-type lamin does not interfere with differentiation of lamin A-negative embryonal carcinoma cells. J Cell Sci 100(Pt 3):589–598

    PubMed  CAS  Google Scholar 

  • Quaroni A, Calnek D, Quaroni E, Chandler JS (1991) Keratin expression in rat intestinal crypt and villus cells. Analysis with a panel of monoclonal antibodies. J Biol Chem 266(18):11923–11931

    PubMed  CAS  Google Scholar 

  • Rankin J, Ellard S (2006) The laminopathies: a clinical review. Clin Genet 70(4):261–274. doi:10.1111/j.1399-0004.2006.00677.x

    Article  PubMed  CAS  Google Scholar 

  • Rankin SA, Hasebe T, Zorn AM, Buchholz DR (2009) Improved cre reporter transgenic Xenopus. Dev Dyn 238(9):2401–2408. doi:10.1002/dvdy.22043

    Article  PubMed  Google Scholar 

  • Rasband WS (1997–2011). Image J. U.S. National Institutes of Health, Bethesda, MD, USA. http://imagej.nih.gov/ij/

  • Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105(2):365–378

    PubMed  CAS  Google Scholar 

  • Shevelyov YY, Lavrov SA, Mikhaylova LM, Nurminsky ID, Kulathinal RJ, Egorova KS, Rozovsky YM, Nurminsky DI (2009) The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci USA 106(9):3282–3287. doi:10.1073/pnas.0811933106

    Article  PubMed  CAS  Google Scholar 

  • Shi Y-B (1999) Amphibian metamorphosis: from morphology to molecular biology. Wiley, New York

    Google Scholar 

  • Shi Y-B, Ishizuya-Oka A (2001) Thyroid hormone regulation of apoptotic tissue remodeling: implications from molecular analysis of amphibian metamorphosis. Prog Nucleic Acid Res Mol Biol 65:53–100

    Article  PubMed  CAS  Google Scholar 

  • Shi Y-B, Liang VC (1994) Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis. Biochim Biophys Acta 1217(2):227–228

    PubMed  CAS  Google Scholar 

  • Stewart C, Burke B (1987) Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51(3):383–392. doi:0092-8674(87)90634-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Stick R, Hausen P (1985) Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell 41(1):191–200. doi:0092-8674(85)90073-X

    Article  PubMed  CAS  Google Scholar 

  • Tata JR (1998) Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Cell Res 8(4):259–272

    PubMed  CAS  Google Scholar 

  • Wolin SL, Krohne G, Kirschner MW (1987) A new lamin in Xenopus somatic tissues displays strong homology to human lamin A. EMBO J 6(12):3809–3818

    PubMed  CAS  Google Scholar 

  • Zimek A, Weber K (2005) Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish. Eur J Cell Biol 84(6):623–635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Masakazu Fujiwara (Nippon Medical School), Itaru Hasunuma (Waseda Univ), and Kosuke Kawamura (Waseda Univ) for providing us technical information. This work was supported in part by JSPS Grants-in-Aid for Scientific Research (C) to A. I.-O (grant no. 20570060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Ishizuya-Oka.

Additional information

Communicated by T. Hollemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasebe, T., Kajita, M., Iwabuchi, M. et al. Thyroid hormone-regulated expression of nuclear lamins correlates with dedifferentiation of intestinal epithelial cells during Xenopus laevis metamorphosis. Dev Genes Evol 221, 199–208 (2011). https://doi.org/10.1007/s00427-011-0371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-011-0371-7

Keywords

Navigation