Skip to main content

Advertisement

Log in

Phylogenetic conservation of the cell-type-specific Lan3-2 glycoepitope in Caenorhabditis elegans

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The biological function of a cell-type-specific glycosylation of an adhesion molecule belonging to the L1CAM immunoglobulin superfamily was previously determined in the nervous system of the embryonic leech, Hirudo medicinalis. The Lan3-2 glycoepitope is a surface marker of sensory afferent neurons and is required for their appropriate developmental collateral branching and synaptogenesis in the CNS. The chemical structure of the Lan3-2 glycoepitope consists of β-(1,4)-linked mannopyranose. Here, we show the conservation of the cell-type-specific expression of this mannose polymer in Caenorhabditis elegans. The Lan3-2 glycoepitope is expressed on the cell surface of a subset of dissociated embryonic neurons and, in the adult worm, by the pharyngeal motor neuron, M5, and the chemosensory afferents, the amphids. Additionally, the vulval epithelium expresses the Lan3-2 glycoepitope in late L4 larvae and in adult hermaphrodites. To investigate proteins carrying this restrictively expressed glycoepitope, worm extract was immunoaffinity purified with Lan3-2 monoclonal antibody and Western blotted. A polyclonal antibody reactive with the cytoplasmic tail of LAD-1/SAX-7, a C. elegans member of the L1CAM family, recognizes a 270 kDa protein band while Lan3-2 antibody also recognizes a 190 kDa glycoform, its putative Lan3-2 ectodomain. Thus, in C. elegans, as in leech, the Lan3-2 epitope is located on a L1CAM homologue. The cell-type-specific expression of the Lan3-2 glycoepitope shared by leech and C. elegans will be useful for understanding how cell-type-specific glycoepitopes mediate cell–cell interactions during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertson DG, Thomson JN (1976) The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275:299–325

    Article  CAS  PubMed  Google Scholar 

  • Aspinall GO, Hirst EL, Percival EGV and Williamson IR (1953) The mannans of ivory nut (Phytelephas macrocarpa) I. The methylation of mannan A and manuan B. J Chem Soc 3184–3188

  • Bacaj T, Tevlin M, Lu Y, Shaham S (2008) Glia Are Essential for Sensory Organ Function in C. elegans. Science 322:744–747

    Article  CAS  PubMed  Google Scholar 

  • Bajt ML, Cole RN, Zipser B (1990) The specificity of 130 kD Leech Sensory Afferent Proteins is encoded by their carbohydrate epitopes. J Neurochem 55:2117–2125

    Article  CAS  PubMed  Google Scholar 

  • Berninsone PM (2006) Carbohydrates and glycosylation. WormBook (www.wormbook.org) 18:1–22

  • Bloom L (1993). Genetic and molecular analysis of genes required for axon outgrowth in Caenorhabditis elegans. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA

  • Chen L, Ong B, Bennett V (2001) LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. J Cell Biol 154:841–855

    Article  CAS  PubMed  Google Scholar 

  • Clermont-Beaugiraud S, Percheron F (1968) Mode of action of a β-mannanase from germinated fenugreek seeds. Bull Soc Chim Biol 50:633–639

    CAS  PubMed  Google Scholar 

  • Cunningham BA, Hoffman S, Rutishauser U, Hemperly JJ, Edelman GM (1983) Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich and binding regions. Proc Natl Acad Sci USA 80:3116–3120

    Article  CAS  PubMed  Google Scholar 

  • Drickamer K, Dodd RB (1999) C-Type lectin-like domains in Caenorhabditis elegans: predictions from the complete genome sequence. Glycobiology 9:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Fan X, She YM, Bagshaw RD, Callahan JW, Schachter H, Mahuran DJ (2004) A method for proteomic identification of membrane-bound proteins containing Asn-linked oligosaccharides. Anal Biochem 332:178–186

    Article  CAS  PubMed  Google Scholar 

  • Gutternigg M, Burgmayr S, Poltl G, Rudolf J, Staudacher (2007) Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica. Glycoconj J 24:475–489

    Article  CAS  PubMed  Google Scholar 

  • Hanneman AJ, Rosa JC, Ashline D, Reinhold VN (2006) Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16:874–890

    Article  CAS  PubMed  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Haslam SM, Dell A (2003) Hallmarks of Caenorhabditis elegans N-glycosylation: complexity and controversy. Biochimie 85:25–32

    Article  CAS  PubMed  Google Scholar 

  • Herman T, Horvitz HR (1999) Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proc Natl Acad Sci USA 96:974–979

    Article  CAS  PubMed  Google Scholar 

  • Herman T, Hartwieg E, Horvitz HR (1999) sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci USA 96:968–973

    Article  CAS  PubMed  Google Scholar 

  • Hirsh D, Oppenheim D, Klass M (1976) Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49:200–219

    Article  CAS  PubMed  Google Scholar 

  • Hogg N, Flaster M, Zipser B (1983) Cross-reactivities of monoclonal antibodies between select leech neuronal and epithelial tissues. J Neurosci Res 9:445–457

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Hollingsworth RI, Haslam SM, Morris HR, Dell A, Zipser B (2008) The Lan3–2 glycoepitope of Hirudo medicinalis consists of β-(1, 4)-linked mannopyranose. J Neurochem 107:1448–1456

    Article  CAS  PubMed  Google Scholar 

  • Inglis PN, Ou g, Leroux MR, Scholey JM (2007) The sensory cilia of Caenorhabditis elegans. Wormbook: 1–22

  • Ioffe E, Stanley P (1994) Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 91:728–732

    Article  CAS  PubMed  Google Scholar 

  • Kuntz SG, Schwarz EM, DeModena JA, De Buysscher T, Trout D, Shizuya H, Sternberg PW, Wold BJ (2008) Multigenome DNA sequence conservation identifies Hox cis-regulatory elements. Genome Res 18:1955–1968

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leung MY, Liu CH, Zhu LF, Hui YZ, Yu B, Fung KP (2004) Chemical and biological characterization of a polysaccharide biological response modifier from Aloe vera. L. var. chinensis. Glycobiology 14:501–510

    Article  CAS  PubMed  Google Scholar 

  • Maness P, Schachner M (2007) Neuronal recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26

    Article  CAS  PubMed  Google Scholar 

  • Mango SE (2007) The C. elegans pharynx: a model for organogenesis. WormBook 22:1–26

    Google Scholar 

  • Martinez VG, Menger GJ 3rd, Zoran MJ (2005) Regeneration and asexual reproduction share common molecular changes: upregulation of a neural glycoepitope during morphallaxis in Lumbriculus. Mech Dev 122:721–732

    Article  CAS  PubMed  Google Scholar 

  • Matani P, Sharrow M, Tiemeyer M (2007) Ligand, modulatory, and co-receptor functions of neural glycans. Front Biosci 12:3852–3879

    Article  CAS  PubMed  Google Scholar 

  • Maupas E (1900). Modes et formes de reproduction des nematodes. Arch Zool 8:464–642

    Google Scholar 

  • Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–673

    Article  CAS  PubMed  Google Scholar 

  • Merry CL, Astrautsova SA (2008) Glycans in evolution and development. Workshop on glycoscience and development. EMBO Rep 9:617–622

    Article  CAS  PubMed  Google Scholar 

  • Nguyen K, van Die I, Grundahl KM, Kawar ZS, Cummings RD (2007) Molecular cloning and characterization of the Caenorhabditis elegans α 1, 3-fucosyltransferase family. Glycobiology 17:586–599

    Article  CAS  PubMed  Google Scholar 

  • O'Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50

    Article  PubMed  Google Scholar 

  • Paschinger K, Hackl M, Gutternigg M, Kretschmer-Lubich D, Stemmer U, Jantsch V, Lochnit G, Wilson IB (2006) A deletion in the golgi α-mannosidase II gene of Caenorhabditis elegans results in unexpected non-wild-type N-glycan structures. J Biol Chem 281:28265–28277

    Article  CAS  PubMed  Google Scholar 

  • Paschinger K, Gutternigg M, Rendić D, Wilson IB (2008) The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 343:2041–2049

    Article  CAS  PubMed  Google Scholar 

  • Paschinger K, Rendić D, Wilson IB (2009) Revealing the anti-HRP epitope in Drosophila and Caenorhabditis. Glycoconj J 26:385–395

    Article  CAS  PubMed  Google Scholar 

  • Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117:456–487

    Article  CAS  PubMed  Google Scholar 

  • Pocock R, Bénard CY, Shapiro L, Hobert O (2007) Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Mol. Cell Neurosci 37:56–68

    Article  Google Scholar 

  • Sasakura H, Inada H, Kuhara A, Fusaoka E, Takemoto D, Takeuchi K, Mori I (2005) Maintenance of neuronal positions in organized ganglia by SAX-7, a Caenorhabditis elegans homologue of L1. EMBO J 24:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zipser B (1995a) Targeting of axonal subsets mediated by their sequentially expressed carbohydrate markers. Neuron 14:537–547

    Article  CAS  PubMed  Google Scholar 

  • Song J, Zipser B (1995b) Kinetic of the inhibition of axonal defasciculation mediated by carbohydrate markers in the embryonic leech. Dev Biol 168:319–331

    Article  CAS  PubMed  Google Scholar 

  • Stanley P (1984) Glycosylation mutants of animal cells. Annu Rev Genet 18:525–552

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MS (1996) Adhesion in development: an historical overview. Dev Biol 180:377–388

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MS, Takeichi M (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci USA 91:206–209

    Article  CAS  PubMed  Google Scholar 

  • Tai MH, Zipser B (1998) Mannose-specific recognition mediates two aspects of synaptic growth of leech sensory afferents: collateral branching and proliferation of synaptic vesicle clusters. Dev Biol 201:154–166

    Article  CAS  PubMed  Google Scholar 

  • Tai MH, Zipser B (1999) Sequential steps in synaptic targeting of leech sensory afferents are mediated by constitutive and developmentally regulated glycosylations of CAMs. Dev Biol 214:258–276

    Article  CAS  PubMed  Google Scholar 

  • Tai MH, Zipser B (2002) Sequential steps of carbohydrate signaling mediate sensory afferent differentiation. J Neurocytol 31:743–754

    Article  CAS  PubMed  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Sci 282:2012–2018

    Article  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160:313–337

    Article  CAS  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  • van Veen HA, Geerts ME, van Berkel PH, Nuijens JH (2004) The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. Eur J Biochem 271:678–684

    Article  PubMed  Google Scholar 

  • Wood WB (1988) The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Xu YZ, Ji Y, Zipser B, Jellies J, Johansen KM, Johansen J (2003) Proteolytic cleavage of the ectodomain of the L1 CAM family member Tractin. J Biol Chem 278:4322–4330

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Van Die I, Cummings RD (2002) Molecular cloning and characterization of a novel α-1, 2-fucosyltransferase (CE2FT-1) from Caenorhabditis elegans. J Biol Chem 277:39823–39832

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Hanneman A, Reinhold VN, Spence AM, Schachter H (2004) Caenorhabditis elegans triple null mutant lacking UDP-N-acetyl-d-glucosamine: α-3-d-mannoside β-1, 2-N-acetylglucosaminyltransferase I. Biochem J 382:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Zipser B, McKay R (1981) Monoclonal antibodies distinguish identifiable neurones in the leech. Nature 289:549–554

    Article  CAS  PubMed  Google Scholar 

  • Zipser B, Morell R, Bajt ML (1989) Defasciculation as a neuronal pathfinding strategy: involvement of a specific of a specific glycoprotein. Neuron 3:621–630

    Article  CAS  PubMed  Google Scholar 

  • Zipser K, Erhardt M, Song J, Cole RN, Zipser B (1994) Distribution of carbohydrate epitopes among disjoint subsets of leech sensory afferent neurons. J Neurosci 14:4481–4493

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martin Chalfie for helping with the identification of Lan3-2 stained neurons. We appreciate generous gifts of sqv1–8 mutants from Dr. Horvitz and Dr. Hwang and LAD-1 antibody from Dr. Lihsia Chen. We thank Drs. Seth Hootman, Joseph Leykam, and Miriam B. Goodman for critically reading the manuscript. This work was supported by National Institute of Health Grant NS5117. Robert O'Hagan was supported by a Predoctoral Fellowship from Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Zipser.

Additional information

Communicated by D.A. Weisblat

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanSteenhouse, H.C., Horton, Z.A., O’Hagan, R. et al. Phylogenetic conservation of the cell-type-specific Lan3-2 glycoepitope in Caenorhabditis elegans . Dev Genes Evol 220, 77–87 (2010). https://doi.org/10.1007/s00427-010-0330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-010-0330-8

Keywords

Navigation