Skip to main content

The expression of wingless and Engrailed in developing embryos of the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae)

Abstract

The expression of the segment polarity genes wingless (wg) and engrailed (en) is highly conserved across arthropods, and these genes play a crucial role in patterning of the segmental body plan. Investigations of the expression and function of wg and en have focused primarily upon holometabolous insects, with the notable exception of recent detailed work in Oncopeltus (Hemiptera), Schistocerca, and Gryllus (Orthoptera). An increase in the phylogenetic breadth of our understanding of molecular patterning is crucial to ascertain the extent of conservation and divergence in molecular patterning mechanisms during insect embryogenesis. We examined the expression of wg mRNA transcripts and localization of En protein during embryogenesis in the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). These data represent one of the first embryonic gene expression pattern data for a mayfly, a lineage that may be the sister group to all other winged insects. Many aspects of wg and En expression are highly conserved, notably their expression in juxtaposed stripes in each parasegment, as well as expression domains in the procephalon, mouthparts, thoracic limbs, and nervous system. Future work in mayflies can be used to determine if conservation extends to other components of the segmentation hierarchy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abzhanov A, Kaufman TC (2000) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506

    Article  CAS  Google Scholar 

  2. Anderson DT (1972) The development of hemimetabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 96–165

    Google Scholar 

  3. Angelini DR, Kaufman TC (2004) Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 271:306–321

    Article  PubMed  CAS  Google Scholar 

  4. Angelini DR, Kaufman TC (2005a) Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 283:409–423

    Article  PubMed  CAS  Google Scholar 

  5. Angelini DR, Kaufman TC (2005b) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77

    Article  PubMed  CAS  Google Scholar 

  6. Baker NE (1987) Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J 6:1765–1773

    PubMed  CAS  Google Scholar 

  7. Baker NE (1988) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103:289–298

    PubMed  CAS  Google Scholar 

  8. Bejsovec A, Martinez Arias A (1991) Roles of wingless in patterning the larval epidermis of Drosophila. Development 113:471–485

    PubMed  CAS  Google Scholar 

  9. Bolognesi R, Farzana L, Fischer TD, Brown SJ (2008a) Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol 18:1624–1629

    Article  PubMed  CAS  Google Scholar 

  10. Bolognesi R, Beermann A, Farzana L, Wittkopp N, Lutz R, Balavoine G, Brown SJ, Shroder R (2008b) Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol 218:193–202

    Article  PubMed  CAS  Google Scholar 

  11. Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395

    Article  PubMed  CAS  Google Scholar 

  12. Boyan G, Williams L (2002) A single cell analysis of engrailed expression in the early embryonic brain of the grasshopper Schistocerca gregaria: ontogeny and identity of the secondary head spots. Arth Struct Dev 30:207–218

    Article  CAS  Google Scholar 

  13. Britt NW (1962) Biology of two species of Lake Erie mayflies: Ephoron album and Ephemera simulans. Bull Ohio Biol Surv 1:1–70

    Google Scholar 

  14. Broadus J, Doe CQ (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121:3989–3996

    PubMed  CAS  Google Scholar 

  15. Brower D (1986) engrailed gene expression in Drosophila imaginal discs. EMBO J 5:2649–2656

    PubMed  CAS  Google Scholar 

  16. Brower AVZ, DeSalle R (1998) Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Mol Biol 7:73–82

    Article  PubMed  CAS  Google Scholar 

  17. Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996

    Article  PubMed  CAS  Google Scholar 

  18. Choe CP, Brown SJ (2007) Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Dev Biol 302:281–294

    Article  PubMed  CAS  Google Scholar 

  19. Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325(2):482–491

    Article  PubMed  CAS  Google Scholar 

  20. Clifford HF, Hamilton H, Killins BA (1979) Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera: Leptophlebiidae). Can J Zool 57:1026–1045

    Article  Google Scholar 

  21. Coleman KG, Poole SJ, Weir MP, Soeller WC, Kornber T (1987) The invected gene of Drosophila: sequence analysis and expression studies reveal a close kinship to the engrailed gene. Genes Dev 1:19–28

    Article  PubMed  CAS  Google Scholar 

  22. Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250

    PubMed  CAS  Google Scholar 

  23. Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dynam 236:1379–1391

    Article  CAS  Google Scholar 

  24. Dearden PK, Akam M (2001) Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 128:3435–3444

    PubMed  CAS  Google Scholar 

  25. Desplan C, Theis J, O'Farrell PH (1985) The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature 318:630–635

    Article  PubMed  CAS  Google Scholar 

  26. DiNardo S, Kuner JM, Theis J, O'Farrell PH (1985) Development of embryonic pattern in Drosophila melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69

    Article  PubMed  CAS  Google Scholar 

  27. Dong Y, Friedrich M (2005) Comparative analysis of Wingless patterning in the embryonic grasshopper eye. Dev Genes Evol 215:177–197

    Article  PubMed  CAS  Google Scholar 

  28. Duman-Scheel M, Pirkl N, Patel NH (2002) Analysis of the expression pattern of Mysidium columbiae wingless provides evidence for conserved mesodermal and retinal patterning among insects and crustaceans. Dev Genes Evol 212:114–123

    Article  PubMed  CAS  Google Scholar 

  29. Edmunds GF Jr, Nielson LT, Larsen JR (1956) The life history of Ephoron album (Ephemeroptera: Polymitarcidae). Wasmann J Biol 14:145–153

    Google Scholar 

  30. Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264

    Article  PubMed  Google Scholar 

  31. Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homeobox containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313:284–289

    Article  PubMed  CAS  Google Scholar 

  32. Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415:910–913

    Article  PubMed  CAS  Google Scholar 

  33. Giberson DJ, Galloway TD (1985) Life history and production of Ephoron album (Say) (Ephemeroptera: Polymitarcidae) in the Valley River, Manitoba. Can J Zool 63:1668–1674

    Article  Google Scholar 

  34. Giorgianni MW, Patel NH (2004) Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 6:402–410

    Article  PubMed  Google Scholar 

  35. Greve GD, Van der Geest HG, Stuijfzand SC, Kraak MHS (1999) Development and validation of an ecotoxicity test using field collected eggs of the riverine mayfly Ephoron virgo. Proc Exp Appl Entomol 10:105–112

    Google Scholar 

  36. Gullan PJ, Cranston PS (2005) The insects: an outline of entomology. Wiley-Blackwell, Massachusetts

    Google Scholar 

  37. Huang C-Y, Kasai M, Buetow DE (1998) Extremely-rapid RNA detection in dot blots with digoxigenin-labeled RNA probes. Genet Anal Biomol Eng 14:109–112

    Article  CAS  Google Scholar 

  38. Hughes CL, Kaufman TC (2002a) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed and wingless in a centipede. Dev Biol 247:47–61

    Article  PubMed  CAS  Google Scholar 

  39. Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evol Dev 4(6):459–499

    Article  PubMed  CAS  Google Scholar 

  40. Ingham PW, Hidalgo A (1993) Regulation of wingless transcription in the Drosophila embryo. Development 117:283–291

    PubMed  CAS  Google Scholar 

  41. Janssen R, Prpic N, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104

    Article  PubMed  CAS  Google Scholar 

  42. Janssen R, Budd GE, Damen WGM, Prpic N-M (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370

    Article  PubMed  CAS  Google Scholar 

  43. Jenner RA (2006) Unburdening evo–devo: ancestral attractions, model organisms, and basal baloney. Dev Genes Evol 216:385–394

    Article  PubMed  Google Scholar 

  44. Jenner RA, Wills MA (2007) The choice of model organisms in evo–devo. Nature Rev Genet 8:311–319

    Article  PubMed  CAS  Google Scholar 

  45. Jockusch EL, Ober KA (2004) Hypothesis testing in evolutionary developmental biology: a case study from insect wings. J Hered 95:382–396

    Article  PubMed  CAS  Google Scholar 

  46. Jockusch EL, Williams TA, Nagy LM (2004) The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 214:324–338

    Article  PubMed  Google Scholar 

  47. Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53:506–514

    Article  PubMed  Google Scholar 

  48. Klingensmith J, Nusse R (1994) Signaling by wingless in Drosophila. Dev Biol 166:396–414

    Article  PubMed  CAS  Google Scholar 

  49. Kornberg T, Siden I, O'Farrell PH, Simon M (1985) The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40:45–63

    Article  PubMed  CAS  Google Scholar 

  50. Lecuit T, Cohen SM (1997) Proximal–distal axis formation in the Drosophila leg. Nature 388:139–145

    Article  PubMed  CAS  Google Scholar 

  51. Liu Z, Yang X, Dong Y, Friedrich M (2006) Tracking down the “head blob”: comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects. Arth Struct Dev 35:341–356

    Article  Google Scholar 

  52. Mahfooz NS, Li H, Popadic A (2004) Differential expression patterns of the hox genes are associated with differential growth of insect hind legs. PNAS 101:4877–4882

    Article  PubMed  CAS  Google Scholar 

  53. Marie B, Bacon JP (2000) Two engrailed-related genes in the cockroach: cloning, phylogenetic analysis, expression and isolation of splice variants. Dev Genes Evol 210:436–448

    Article  PubMed  CAS  Google Scholar 

  54. McCafferty WP (1975) The burrowing mayflies of the United States (Ephemeroptera: Ephemeroidea). Trans Am Entomol Soc 101(3):447–504

    Google Scholar 

  55. Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130

    Article  PubMed  CAS  Google Scholar 

  56. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  57. Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463

    Article  PubMed  CAS  Google Scholar 

  58. Needham JG, Traver JR, Hsu YC (1935) The biology of mayflies with a systematic account of North American species. Comstock, New York

    Google Scholar 

  59. Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    PubMed  CAS  Google Scholar 

  60. Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S (2010) Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev 12:168–176

    PubMed  CAS  Article  Google Scholar 

  61. Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 209:340–348

    Article  PubMed  CAS  Google Scholar 

  62. Nusse R, Varmus HE (1992) Wnt genes. Cell 69:1073–1087

    Article  PubMed  CAS  Google Scholar 

  63. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  64. O’Donnell BC (2009) Early nymphal development in Ephoron leukon (Ephemeroptera: Polymitarcyidae) with particular emphasis on mouthparts and abdominal gills. Ann Entomol Soc Am 102(1):128–136

    Article  Google Scholar 

  65. Ober KA, Jockusch EL (2006) The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol 294:391–405

    Article  PubMed  CAS  Google Scholar 

  66. Ohde T, Masumoto M, Yaginuma T, Niimi T (2009) Embryonic RNAi analysis in the firebrat, Thermobia domestica: Distal-less is required to form caudal filament. J Insect Biotechnol Sericology 78:99–105

    CAS  Google Scholar 

  67. Oppenheimer DI, MacNicol AM, Patel NH (1999) Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system. Curr Biol 9:1288–1296

    Article  PubMed  CAS  Google Scholar 

  68. Panganiban G, Sebring A, Nagy L, Carroll S (1995) The development of crustacean limbs and the evolution of arthropods. Science 270:1363–1366

    Article  PubMed  CAS  Google Scholar 

  69. Papillon D, Telford MF (2007) Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex. Dev Genes Evol 4:315–322

    Article  CAS  Google Scholar 

  70. Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids and chordates. Cell 58:955–968

    Article  PubMed  CAS  Google Scholar 

  71. Peel AD, Telford ML, Akam M (2006) The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proc R Soc B 273:1733–1742

    Article  PubMed  CAS  Google Scholar 

  72. Peterson MD, Popadic A, Kaufman TC (1998) The expression of two engrailed-related genes in an apterygote insect and a phylogenetic analysis of insect engrailed-related genes. Dev Genes Evol 208:547–557

    Article  PubMed  CAS  Google Scholar 

  73. Prpic N (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 1:1–12

    Article  CAS  Google Scholar 

  74. Prud’homme B, de Rosa R, Arendt D, Julien J-F, Pajaziti R, Dorresteijn AWC, Adoutte A, Wittbrodt J, Balavoine G (2003) Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 13:1876–1881

    Article  PubMed  CAS  Google Scholar 

  75. Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. PNAS 105(43):16614–16619

    Article  PubMed  Google Scholar 

  76. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    Article  PubMed  CAS  Google Scholar 

  77. Regier JC, Shultz JW, Swick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  PubMed  CAS  Google Scholar 

  78. Rogers BT, Kaufman TC (1996) Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development 122:3419–3432

    PubMed  CAS  Google Scholar 

  79. Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917

    Article  PubMed  Google Scholar 

  80. Schmidt-Ott U, Technau GM (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116:111–125

    PubMed  CAS  Google Scholar 

  81. Serrano N, Brock HW, Demeret C, Dura J-M, Randsholt NB, Kornberg TB, Maschat F (1995) polyhomeotic appears to be a target of Engrailed regulation in Drosophila. Development 121:1691–1703

    PubMed  CAS  Google Scholar 

  82. Siegler MVS, Pankhaniya RR, Jia XX (2001) Pattern of expression of engrailed in relation to gamma-aminobutyric acid immunoreactivity in the central nervous system of the adult grasshopper. J Comp Neurol 440:85–96

    Article  PubMed  CAS  Google Scholar 

  83. Simon S, Strauss S, von Haeseler A, Hadrys H (2009) A phylogenomic approach to resolve the basal pterygote divergence. Mol Biol Evol 26:2719–2730

    Article  PubMed  CAS  Google Scholar 

  84. Sintoni S, Fabritius-Vilpous K, Harzsch S (2007) The Engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev Genes Evol 217:791–799

    Article  PubMed  Google Scholar 

  85. Snyder CD, Willis LD, Hendricks AC (1991) Spatial and temporal variation in the growth and production of Ephoron leukon (Ephemeroptera: Polymitarcyidae). JN Am Benthol Soc 10:57–67

    Article  Google Scholar 

  86. Sommer RJ (2009) The future of evo–devo: model systems and evolutionary theory. Nature Rev Genet 10:416–422

    PubMed  CAS  Google Scholar 

  87. Stollewerk A, Schoppmeier M, Damen WG (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865

    Article  PubMed  CAS  Google Scholar 

  88. Tojo K, Machida R (1997) Embryogenesis of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae), with special reference to abdominal formation. J Morphol 234:97–107

    Article  Google Scholar 

  89. Tojo K, Machida R (1999) Early embryonic development of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae). J Morphol 238:327–335

    Article  Google Scholar 

  90. Travis J (2006) Is it what we know or who we know? Choice of organism and robustness of inference in ecology and evolutionary biology. Am Nat 167:303–314

    Article  PubMed  Google Scholar 

  91. Tsui PTP, Peters WL (1974) Embryonic development, early instar morphology, and behavior of Tortopus incertus (Ephemeroptera: Polymitarcidae). Fla Entomol 57(4):349–356

    Article  Google Scholar 

  92. Watanabe NC (1998) Geographical variation in Japan in egg development of the mayfly, Ephoron shigae (Ephemeroptera: Polymitarcyidae). Freshwater Biol 40:245–254

    Article  Google Scholar 

  93. Watanabe NC, Ohkita A (2000) Life cycle and synchronization of nymphal development of the mayfly Ephoron shigae in Japan (Ephemeroptera: Polymitarcyidae). Aquat Insects 22:108–121

    Article  Google Scholar 

  94. Watanabe NC, Takao S (1991) Effect of a low temperature period on the egg hatching of the Japanese burrowing mayfly, Ephoron shigae. In: Alba-Tercedor J, Sánchez-Ortega A (eds) Overview and strategies of Ephemeroptera and Plecoptera. Sandhill Crane Press, Florida, pp 439–445

    Google Scholar 

  95. Williams TA, Nagy LM (1996) Comparative limb development in insects and crustaceans. Semin Cell Dev Biol 7:615–628

    Article  Google Scholar 

  96. Willman R (2004) Phylogenetic relationships and evolution of insects. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 330–344

    Google Scholar 

  97. Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121:2265–2278

    PubMed  CAS  Google Scholar 

  98. Zhang J, Zhou C, Gai Y, Song D, Zhou K (2008) The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and the phylogenetic position of the Ephemeroptera. Gene 424:18–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Janine Caira and Steve Burian contributed feedback on early drafts, and the comments of two anonymous reviewers greatly improved this manuscript. Karen Ober and Dave Angelini provided critical feedback on troubleshooting protocols for microscopy, in situ hybridization, and protein localization. Special thanks to Karen Ober and Katie Rose Boissonneault for their assistance with imaging of DAPI-stained embryos and to Nipam Patel for generously donating the En4F11 antibody.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brigid C. O’Donnell.

Additional information

Communicated by P. Simpson

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O’Donnell, B.C., Jockusch, E.L. The expression of wingless and Engrailed in developing embryos of the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). Dev Genes Evol 220, 11–24 (2010). https://doi.org/10.1007/s00427-010-0324-6

Download citation

Keywords

  • Ephoron leukon
  • Wingless
  • Engrailed
  • Mayfly
  • Embryogenesis
  • Segment polarity genes