Skip to main content

Molecular evolution of SPARC: absence of the acidic module and expression in the endoderm of the starlet sea anemone, Nematostella vectensis

Abstract

The matricellular glycoprotein SPARC is composed of three functional domains that are evolutionarily conserved in organisms ranging from nematodes to mammals: a Ca2+-binding glutamic acid-rich acidic domain at the N-terminus (domain I), a follistatin-like module (domain II), and an extracellular Ca2+-binding (EC) module that contains two EF-hands and two collagen-binding epitopes (domain III). We report that four SPARC orthologs (designated nvSPARC1-4) are expressed by the genome of the starlet anemone Nematostella vectensis, a diploblastic basal cnidarian composed of an ectoderm and endoderm separated by collagen-based mesoglea. We also report that domain I is absent from all N. vectensis SPARC orthologs. In situ hybridization data indicate that N. vectensis SPARC mRNAs are restricted to the endoderm during post-gastrula development. The absence of the Ca2+-binding N-terminal domain in cnidarians and conservation of collagen-binding epitopes suggests that SPARC first evolved as a collagen-binding matricellular glycoprotein, an interaction likely to be dependent on the binding of Ca2+-ions to the two EF-hands in the EC domain. We propose that further Ca2+-dependent activities emerged with the acquisition of an acidic N-terminal module in triplobastic organisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Bassuk JA et al (2000) Induction of TGF-beta1 by the matricellular protein SPARC in a rat model of glomerulonephritis. Kidney Int 57:117–128

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal (in press) doi:10.1007/s12079/009-0062-6

  • Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Brown TJ, Shaw PA, Karp X, Huynh MH, Begley H, Ringuette MJ (1999) Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecol Oncol 75:25–33

    Article  CAS  PubMed  Google Scholar 

  • Damjanovski S, Malaval L, Ringuette MJ (1994) Transient expression of SPARC in the dorsal axis of early Xenopus embryos: correlation with calcium-dependent adhesion and electrical coupling. Int J Dev Biol 38:439–446

    CAS  PubMed  Google Scholar 

  • Damjanovski S, Karp X, Funk S, Sage EH, Ringuette MJ (1997) Ectopic expression of SPARC in Xenopus embryos interferes with tissue morphogenesis: identification of a bioactive sequence in the C-terminal EF hand. J Histochem Cytochem 45:643–655

    CAS  PubMed  Google Scholar 

  • Damjanovski S, Huynh MH, Motamed K, Sage EH, Ringuette M (1998) Regulation of SPARC expression during early Xenopus development: evolutionary divergence and conservation of DNA regulatory elements between amphibians and mammals. Dev Genes Evol 207:453–461

    Article  CAS  PubMed  Google Scholar 

  • Darling JA et al (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 27:211–221

    Article  CAS  PubMed  Google Scholar 

  • Davis LE, Haynes JF (1968) An ultrastructural examination of the mesoglea of Hydra. Z Zellforsch Mikrosk Anat 92:149–158

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phlyogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitzgerald MC, Schwarzbauer JE (1998) Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Curr Biol 8:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Francki A, Bradshaw AD, Bassuk JA, Howe CC, Couser WG, Sage EH (1999) SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. J Biol Chem 274:32145–32152

    Article  CAS  PubMed  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from interative simulation using multiple sequences. Statistical Science 7:457–511

    Article  Google Scholar 

  • Giudici C et al (2008) Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens. J Biol Chem 283:19551–19560

    Article  CAS  PubMed  Google Scholar 

  • Greiling TM, Stone B, Clark JI (2009) Absence of SPARC leads to impaired lens circulation. Exp Eye Res 89:416–425

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Google Scholar 

  • Guindon S, Letheic F, Duroux P, Gascuel O (2005) PHYML Online - a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–559

    Google Scholar 

  • Hohenester E, Maurer P, Timpl R (1997) Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. EMBO J 16:3778–3786

    Article  CAS  PubMed  Google Scholar 

  • Hohenester E, Sasaki T, Giudici C, Farndale RW, Bachinger HP (2008) Structural basis of sequence-specific collagen recognition by SPARC. Proc Natl Acad Sci USA 105:18273–18277

    Article  CAS  PubMed  Google Scholar 

  • Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300(Pt 3):723–728

    CAS  PubMed  Google Scholar 

  • Huynh MH, Sage EH, Ringuette M (1999) A calcium-binding motif in SPARC/osteonectin inhibits chordomesoderm cell migration during Xenopus laevis gastrulation: evidence of counter-adhesive activity in vivo. Dev Growth Differ 41:407–418

    Article  CAS  PubMed  Google Scholar 

  • Johnston IG, Paladino T, Gurd JW, Brown IR (1990) Molecular cloning of SC1: a putative brain extracellular matrix glycoprotein showing partial similarity to osteonectin/BM40/SPARC. Neuron 4:165–176

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K, Weiss KM (2006) Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. J Exp Zool B Mol Dev Evol 306:295–316

    Article  PubMed  Google Scholar 

  • Kawasaki K, Suzuki T, Weiss KM (2004) Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci USA 101:11356–11361

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K, Buchanan AV, Weiss KM (2007) Gene duplication and the evolution of vertebrate skeletal mineralization. Cells Tissues Organs 186:7–24

    Article  PubMed  Google Scholar 

  • Lane TF, Sage EH (1990) Functional mapping of SPARC: peptides from two distinct Ca+(+)-binding sites modulate cell shape. J Cell Biol 111:3065–3076

    Article  CAS  PubMed  Google Scholar 

  • Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell–matrix interactions. Faseb J 8:163–173

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927

    Article  CAS  PubMed  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131:2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Martinek N, Zou R, Berg M, Sodek J, Ringuette M (2002) Evolutionary conservation and association of SPARC with the basal lamina in Drosophila. Dev Genes Evol 212:124–133

    Article  CAS  PubMed  Google Scholar 

  • Martinek N, Shahab J, Sodek J, Ringuette M (2007) Is SPARC an evolutionarily conserved collagen chaperone? J Dent Res 86:296–305

    Article  CAS  PubMed  Google Scholar 

  • Martinek N, Shahab J, Saathoff M, Ringuette M (2008) Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J Cell Sci 121:1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Mason IJ, Murphy D, Munke M, Francke U, Elliott RW, Hogan BL (1986) Developmental and transformation-sensitive expression of the Sparc gene on mouse chromosome 11. EMBO J 5:1831–1837

    CAS  PubMed  Google Scholar 

  • Maurer P et al (1992) High-affinity and low-affinity calcium binding and stability of the multidomain extracellular 40-kDa basement membrane glycoprotein (BM-40/SPARC/osteonectin). Eur J Biochem 205:233–240

    Article  CAS  PubMed  Google Scholar 

  • Maurer P, Hohenadl C, Hohenester E, Gohring W, Timpl R, Engel J (1995) The C-terminal portion of BM-40 (SPARC/osteonectin) is an autonomously folding and crystallisable domain that binds calcium and collagen IV. J Mol Biol 253:347–357

    Article  CAS  PubMed  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Motamed K, Funk SE, Koyama H, Ross R, Raines EW, Sage EH (2002) Inhibition of PDGF-stimulated and matrix-mediated proliferation of human vascular smooth muscle cells by SPARC is independent of changes in cell shape or cyclin-dependent kinase inhibitors. J Cell Biochem 84:759–771

    Article  PubMed  Google Scholar 

  • Motamed K et al (2003) Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A. J Cell Biochem 90:408–423

    Article  CAS  PubMed  Google Scholar 

  • Nie J et al (2008) IFATS collection: combinatorial peptides identify alpha5beta1 integrin as a receptor for the matricellular protein SPARC on adipose stromal cells. Stem Cells 26:2735–2745

    Article  CAS  PubMed  Google Scholar 

  • Norose K et al (1998) SPARC deficiency leads to early-onset cataractogenesis. Invest Ophthalmol Vis Sci 39:2674–2680

    CAS  PubMed  Google Scholar 

  • Novinec M, Kordis D, Turk V, Lenarcic B (2006) Diversity and evolution of the thyroglobulin type-1 domain superfamily. Mol Biol Evol 23:744–755

    Article  CAS  PubMed  Google Scholar 

  • Pottgiesser J et al (1994) Changes in calcium and collagen IV binding caused by mutations in the EF hand and other domains of extracellular matrix protein BM-40 (SPARC, osteonectin). J Mol Biol 238:563–574

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  PubMed  Google Scholar 

  • Rentz TJ, Poobalarahi F, Bornstein P, Sage EH, Bradshaw AD (2007) SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282:22062–22071

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T et al (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 272:9237–9243

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Hohenester E, Gohring W, Timpl R (1998) Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. EMBO J 17:1625–1634

    Article  CAS  PubMed  Google Scholar 

  • Schmid V, Ono SI, Reber-Muller S (1999) Cell–substrate interactions in cnidaria. Microsc Res Tech 44:254–268

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbauer JE, Spencer CS (1993) The Caenorhabditis elegans homologue of the extracellular calcium binding protein SPARC/osteonectin affects nematode body morphology and mobility. Mol Biol Cell 4:941–952

    CAS  PubMed  Google Scholar 

  • Schwarzbauer JE, Musset-Bilal F, Ryan CS (1994) Extracellular calcium-binding protein SPARC/osteonectin in Caenorhabditis elegans. Methods Enzymol 245:257–270

    Article  CAS  PubMed  Google Scholar 

  • Sodek KL et al (2008) Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT). Mol Biosyst 4:762–773

    Article  CAS  PubMed  Google Scholar 

  • Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11:231–246

    Article  CAS  PubMed  Google Scholar 

  • Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Vannahme C et al (1999) Molecular cloning of testican-2: defining a novel calcium-binding proteoglycan family expressed in brain. J Neurochem 73:12–20

    Article  CAS  PubMed  Google Scholar 

  • Vannahme C et al (2002) Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem 277:37977–37986

    Article  CAS  PubMed  Google Scholar 

  • Vannahme C, Gosling S, Paulsson M, Maurer P, Hartmann U (2003) Characterization of SMOC-2, a modular extracellular calcium-binding protein. Biochem J 373:805–814

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Discovery grants to B.C., M.R., S.D., and U.T. from National Sciences and Research Council of Canada and an Early Researcher Award to B.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Ringuette.

Additional information

Communicated by M.Q. Martindale

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 31 kb)

Supplementary Table 2

(DOC 41.5 kb)

Supplementary data S1

(DOC 50.5 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koehler, A., Desser, S., Chang, B. et al. Molecular evolution of SPARC: absence of the acidic module and expression in the endoderm of the starlet sea anemone, Nematostella vectensis . Dev Genes Evol 219, 509–521 (2009). https://doi.org/10.1007/s00427-009-0313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-009-0313-9

Keywords

  • SPARC
  • Nematostella vectensis
  • Gene duplication
  • Calcium binding
  • Collagen binding
  • Endoderm