Skip to main content
Log in

Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae)

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

CYCLOIDIEA (CYC) and its homologues have been studied intensively in the model organism Antirrhinum majus and related species regarding their function in controlling floral dorsoventral (adaxial–abaxial) asymmetry, including aborting the adaxial and lateral stamens. This raises the question whether the same mechanism underlies the great morphological diversity of zygomorphy in angiosperms, especially in Lamiales sensu lato, a major clade predominantly with zygomorphic flowers. To address this, we selected a representative in Gesneriaceae, the sister to the remainder of Lamiales s.l., to isolate CYC homologues and further investigate their expression patterns using locus-specific semiquantitative reverse transcriptase polymerase chain reaction. Our results showed that four CYC homologues in Chirita heterotricha differentiated spatially and temporally in expression, in which ChCYC1D was only expressed in the adaxial regions, and transcripts of ChCYC1C were distributed in both the adaxial and lateral regions, while ChCYC2A and ChCYC2B transcripts were only detected in the young inflorescences. ChCYC1C expression in the lateral regions correlated with abortion of the lateral stamens in C. heterotricha hinted at its gain of function, i.e., expanding from the adaxial to the lateral regions in expression. Correlatively, the protein sequences of ChCYC genes exhibited remarkable divergences, in which some lineage-specific amino acids between GCYC1 and GCYC2 in conserved functional domains and two sublineage-specific motifs between GCYC1C and GCYC1D in GCYC1 genes had further been identified. Our results indicated that ChCYC genes had probably undergone an expressional differentiation and specialization in establishing the floral dorsoventral asymmetry in C. heterotricha responding to different selective pressure after gene duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Burtt BL (1990) Gesneriaceae of the Old World. I. New and little-known species of Cyrtandra from Malesia. Edinburgh J Bot 47:201–233

    Google Scholar 

  • Citerne HL, Möller M, Cronk QCB (2000) Diversity of CYCLOIDEA-like genes in Gesneriaceae in relation to floral symmetry. Ann Bot 86:167–176

    Article  CAS  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen ES (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Coen E, Zapater JMM (2001) Ancient asymmetries in the evolution of flowers. Curr Biol 11:1050–1052

    Article  PubMed  CAS  Google Scholar 

  • Damerval C, Guilloux ML, Jager M, Charon C (2007) Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiol 143:759–772

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Du ZY, Wang YZ (2008) Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii (Gesneriaceae). Journal of Systematics and Evolution 46:23–31

    Google Scholar 

  • Endress PK (1998) Antirrhinum and Asteridae—evolutionary changes of floral symmetry. Symp Soc Exp Biol 51:133–140

    PubMed  CAS  Google Scholar 

  • Endress PK (1999) Symmetry in flowers: diversity and evolution. Int J Plant Sci 160:S3–S23

    Article  PubMed  Google Scholar 

  • Feng XZ, Zhao Z, Tian ZX, Xu SL, Luo YH, Cai ZG, Wang YM, Yang J, Wang Z, Weng L, Chen JH, Zheng LY, Guo XZ, Luo JH, Sato S, Tabata S, Ma W, Cao XL, Hu XH, Sun CR, Luo D (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci USA 103:4970–4975

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Gu ZL, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19:256–262

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online: a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:557–559

    Article  CAS  Google Scholar 

  • He XL, Zhang JZ (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:1157–1164

    Article  PubMed  Google Scholar 

  • Hileman LC, Kramer EM, Baum DA (2003) Differential regulation of symmetry genes and the evolution of floral morphologies. Proc Natl Acad Sci USA 100:12814–12819

    Article  PubMed  CAS  Google Scholar 

  • Howarth DG, Donoghue MJ (2005) Duplications in CYC-like genes from Dipsacales correlate with floral form. Int J Plant Sci 166:357–370

    Article  CAS  Google Scholar 

  • Howarth DG, Donoghue MJ (2006) Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci USA 103:9101–9106

    Article  PubMed  CAS  Google Scholar 

  • Hsia CC, McGinnis W (2003) Evolution of transcription factor function. Curr Opin Genet Dev 13:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched 1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935

    PubMed  CAS  Google Scholar 

  • Kölsch A, Gleissberg S (2006) Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. Plant Biol 8:680–687

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348

    Article  PubMed  CAS  Google Scholar 

  • Kreitman M, Comeron JM (1999) Coding sequence evolution. Curr Opin Genet Dev 9:637–641

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Wang YZ (2004) Plants of Gesneriaceae in China. Henan Science and Technology publishing house, Zhengzhou, China

    Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen ES (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen ES (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367–376

    Article  PubMed  CAS  Google Scholar 

  • Möller M, Clokie M, Cubas P, Cronk QCB (1999) Integrating molecular phylogenies and developmental genetics: a Gesneriaceae case study. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor and Francis, London, pp 375–402

    Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Euolution by gene duplication. Springer, New York

    Google Scholar 

  • Prasad K, Sriram P, Kumar SC, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitutions. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony software (*and other methods) version 4.0b10. Available at: http://paup.csit.fsu.edu/

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wang CN, Möller M, Cronk QCB (2004) Phylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions. Syst Bot 29:407–418

    Article  Google Scholar 

  • Wang WT, Pan KY, Li ZY (1992) Keys to the Gesneriaceae of China. Edinburgh J Bot 49:5–74

    Article  Google Scholar 

  • Weber A (2004) Gesneriaceae. In: Kubitzki K, Kadereit JW (eds) The families and genera of vascular plants. Springer, Berlin, pp 63–158

    Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: Software package for data analysis in molecular biology and evolution. J Heredity 92:371–373

    Article  CAS  Google Scholar 

  • Zhang JZ (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhou XR, Wang YZ, Smith JF, Chen RJ (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytol 178:532–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to James F. Smith for critical comments and improvements on our manuscript, especially in language editing. We also thank Mr. Chen Yan for assistance in the greenhouse. This research was supported by CAS Grant KSCX2-YW-R-135 and National Natural Science Foundation of China Grant, nos. 30770147, 30121003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin-Zheng Wang or Zhen-Yu Li.

Additional information

Communicated by K. Schneitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Q., Tao, JH., Yan, D. et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Dev Genes Evol 218, 341–351 (2008). https://doi.org/10.1007/s00427-008-0227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-008-0227-y

Keywords

Navigation