Development Genes and Evolution

, Volume 218, Issue 3–4, pp 119–126 | Cite as

From development to biodiversity—Tribolium castaneum, an insect model organism for short germband development

  • Reinhard Schröder
  • Anke Beermann
  • Nadine Wittkopp
  • Rebekka Lutz
Review

Abstract

Insect embryogenesis is best understood in the fruit fly Drosophila. However, Drosophila embryogenesis shows evolutionary-derived features: anterior patterning is controlled by a highly derived Hox gene bicoid, the body segments form almost simultaneously and appendages develop from imaginal discs. In contrast, embryogenesis of the red flour beetle Tribolium castaneum displays typical features in anterior patterning, axis and limb formation shared with most insects, other arthropods as well as with vertebrates. Anterior patterning depends on the conserved homeobox gene orthodenticle, the main body axis elongates sequentially and limbs grow continuously starting from an appendage bud. Thus, by analysing developmental processes in the beetle at the molecular and cellular level, inferences can be made for similar processes in other arthropods. With the completion of sequencing the Tribolium genome, the door is now open for post-genomic studies such as RNA expression profiling, proteomics and functional genomics to identify beetle-specific gene circuits.

Keywords

Tribolium Evolution Axis elongation Short germband Genome 

References

  1. Akiyama-Oda Y, Oda H (2006) Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development 133:2347–2357PubMedCrossRefGoogle Scholar
  2. Angelini DR, Kaufman TC (2005) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77PubMedCrossRefGoogle Scholar
  3. Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250:231–250PubMedGoogle Scholar
  4. Beermann A, Schröder R (2004) Functional stability of the aristaless gene in appendage tip formation during evolution. Dev Genes Evol 214:303–308PubMedCrossRefGoogle Scholar
  5. Beermann A, Schröder R (2008) Sites of FGF signalling and perception during embryogenesis of the beetle Tribolium castaneum. Dev Genes Evol (this issue) DOI 10.1007/s00427-007-0192-x
  6. Beermann A, Jay DG, Beeman RW, Hülskamp M, Tautz D, Jürgens G (2001) The Short antennae gene of Tribolium is required for limb development and encodes the orthologue of the Drosophila Distal-less protein. Development 128:287–297PubMedGoogle Scholar
  7. Beermann A, Aranda M, Schröder R (2004) The Sp8 zinc-finger transcription factor is involved in allometric growth of the limbs in the beetle Tribolium castaneum. Development 131:733–742PubMedCrossRefGoogle Scholar
  8. Bell SM, Schreiner CM, Waclaw RR, Campbell K, Potter SS, Scott WJ (2003) Sp8 is crucial for limb outgrowth and neuropore closure. Proc Natl Acad Sci USA 100:12195–12200PubMedCrossRefGoogle Scholar
  9. Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371PubMedCrossRefGoogle Scholar
  10. Bolognesi R, Beermann A, Farzana L, Wittkopp N, Lutz R, Balavoine G, Brown S, Schröder R (2008) Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol (this issue) DOI 10.1007/s00427-007-0170-3
  11. Brown SJ, Mahaffey JP, Lorenzen MD, Denell RE, Mahaffey JW (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev 1:11–15PubMedCrossRefGoogle Scholar
  12. Bucher G, Klingler M (2004) Divergent segmentation mechanism in the short germ insect Tribolium revealed by giant expression and function. Development 131:1729–1740PubMedCrossRefGoogle Scholar
  13. Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86PubMedCrossRefGoogle Scholar
  14. Campbell G (2005) Regulation of gene expression in the distal region of the Drosophila leg by the Hox11 homolog, C15. Dev Biol 278:607–618PubMedCrossRefGoogle Scholar
  15. Campbell G, Tomlinson A (1998) The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development 125:4483–4493PubMedGoogle Scholar
  16. Cerny AC, Bucher G, Schröder R, Klingler M (2005) Breakdown of abdominal patterning in the Tribolium Krüppel mutant jaws. Development 132:5353–5363PubMedCrossRefGoogle Scholar
  17. Chawengsaksophak K, de Graaff W, Rossant J, Deschamps J, Beck F (2004) Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci USA 101:7641–7645PubMedCrossRefGoogle Scholar
  18. Chen G, Handel K, Roth S (2000) The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127:5145–5156PubMedGoogle Scholar
  19. Choe CP, Miller SC, Brown SJ (2006) A pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneum. Proc Natl Acad Sci USA 103:6560–6564PubMedCrossRefGoogle Scholar
  20. Copf T, Schröder R, Averof M (2004) An ancestral role of caudal genes in axis elongation and segmentation. Proc Natl Acad Sci USA 101:17711–17715PubMedCrossRefGoogle Scholar
  21. de Celis JF, Tyler DM, de Celis J, Bray SJ (1998) Notch signalling mediates segmentation of the Drosophila leg. Development 125:4617–4626PubMedGoogle Scholar
  22. Estella C, Rieckhof GE, Calleja M, Morata G (2003) The role of buttonhead and Sp1 in the development of the ventral imaginal discs of Drosophila. Development 130:5929–5941PubMedCrossRefGoogle Scholar
  23. Finkelstein R, Smouse D, Capaci TM, Spradling AC, Perrimon N (1990) The orthodenticle gene encodes a novel homeodomain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4:1516–1527PubMedCrossRefGoogle Scholar
  24. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  25. Fonseca RN, Levetzow C, Kalscheuer P, Basal A, Roth S (2008) Self-regulatory circuits in dorsoventral axis formation of the short germ beetle Tribolium castaneum. Dev Cell (in press)Google Scholar
  26. Frickhinger H (1950) Der Reismehlkäfer (Tribolium castaneum Herbst) in Schaumgebäck. J Pet Sci 23:10–11Google Scholar
  27. Gao Q, Finkelstein R (1998) Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development 125:4185–4193PubMedGoogle Scholar
  28. Heming B (2003) Insect development and evolution. Ithaka, Cornell University PressGoogle Scholar
  29. Jack T, McGinnis W (1990) Establishment of the Deformed expression stripe requires the combinatorial action of coordinate, gap and pair-rule proteins. EMBO J 9:1187–1198PubMedGoogle Scholar
  30. Klingler M (2004) Tribolium. Curr Biol 14:R639–R640PubMedCrossRefGoogle Scholar
  31. Kojima T, Tsuji T, Saigo K (2005) A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg. Dev Biol 279:434–445PubMedCrossRefGoogle Scholar
  32. Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y (2007) Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat Cell Biol 9:660–665PubMedCrossRefGoogle Scholar
  33. Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C (2006) Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439:728–732PubMedCrossRefGoogle Scholar
  34. Macdonald PM, Struhl G (1986) A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324:537–545PubMedCrossRefGoogle Scholar
  35. Maxton-Küchenmeister J, Handel K, Schmidt-Ott U, Roth S, Jäckle H (1999) Toll homologue expression in the beetle Tribolium suggests a different mode of dorsoventral patterning than in drosophila embryos. Mech Dev 83:107–114CrossRefGoogle Scholar
  36. Morata G (2001) How Drosophila appendages develop. Nat Rev Mol Cell Biol 2:89–97PubMedCrossRefGoogle Scholar
  37. Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo-shaping and transducing a morphogen gradient. Curr Biol 15:R887–R899PubMedCrossRefGoogle Scholar
  38. Olesnicky EC, Brent AE, Tonnes L, Walker M, Pultz MA, Leaf D, Desplan C (2006) A caudal mRNA gradient controls posterior development in the wasp Nasonia. Development 133:3973–3982PubMedCrossRefGoogle Scholar
  39. Pourquié O (2003) Vertebrate somitogenesis: a novel paradigm for animal segmentation? Int J Dev Biol 47:597–603PubMedGoogle Scholar
  40. Reinitz J, Levine M (1990) Control of the initiation of homeotic gene expression by the gap genes giant and tailless in Drosophila. Dev Biol 140:57–72PubMedCrossRefGoogle Scholar
  41. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238CrossRefGoogle Scholar
  42. Savard J, Marques-Souza H, Aranda M, Tautz D (2006) A segmentation gene in Tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell 126:559–569PubMedCrossRefGoogle Scholar
  43. Schoppmeier M, Schröder R (2005) Maternal Torso-signaling controls body axis elongation in a short germ insect. Curr Biol 15:2131–2136PubMedCrossRefGoogle Scholar
  44. Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625PubMedCrossRefGoogle Scholar
  45. Schulz C, Schröder R, Hausdorf B, Wolff C, Tautz D (1998) A caudal homologue in the short germ band beetle Tribolium shows similarities to both, the Drosophila and the vertebrate caudal expression patterns. Dev Genes Evol 208:283–289PubMedCrossRefGoogle Scholar
  46. Stauber M, Jäckle H, Schmidt-Ott U (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci USA 96:3786–3789PubMedCrossRefGoogle Scholar
  47. StJohnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–220CrossRefGoogle Scholar
  48. Stollewerk A, Schoppmeier M, Damen WG (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865PubMedCrossRefGoogle Scholar
  49. Sulston IA, Anderson KV (1996) Embryonic patterning mutants of Tribolium castaneum. Development 122:805–814PubMedGoogle Scholar
  50. Tribolium Genome Sequencing Consortium (2008) The genome of the developmental model beetle and pest Tribolium castaneum. Nature (in press)Google Scholar
  51. Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578PubMedCrossRefGoogle Scholar
  52. Tomoyasu Y, Wheeler SR, Denell RE (2005) Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 433:643–647PubMedCrossRefGoogle Scholar
  53. van der Zee M, Stockhammer O, von Levetzow C, Nunes da Fonseca R, Roth S (2006) Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. Proc Natl Acad Sci USA 103:16307–16312PubMedCrossRefGoogle Scholar
  54. Wyder S, Kriventseva EV, Schröder R, Kadowaki T, Zdobnov EM (2007) Quantification of ortholog losses in insects and vertebrates. Genome Biol 8:R242PubMedCrossRefGoogle Scholar
  55. Zusman SB, Sweeton D, Wieschaus EF (1988) short gastrulation, a mutation causing delays in stage-specific cell shape changes during gastrulation in Drosophila melanogaster. Dev Biol 129:417–427PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Reinhard Schröder
    • 1
    • 2
  • Anke Beermann
    • 1
  • Nadine Wittkopp
    • 1
  • Rebekka Lutz
    • 1
  1. 1.Department of Animal Genetics, Institute for Cell BiologyUniversity of TübingenTübingenGermany
  2. 2.Department of Genetics, Institute of Biological SciencesUniversity of RostockRostockGermany

Personalised recommendations